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The second elliptic equation method is a more general form of Jacobi elliptic func-
tion expansion method, which can obtain more kinds of solutions of a non-linear 
evolution equation. In this paper, the method is used to solve the Kdv-Burgers-Ku-
ramoto (Benny) equation with variable coefficients, and its extremely rich solution 
properties are elucidated, among which the biperiodic solutions, solitary wave 
solutions and trigonometric periodic solutions are analyzed graphically.
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Introduction

In this paper, we will study the following Benny equation [1, 2]
0t x xx xxx xxxxu uu u u uα β δ+ + + + = (1)

where β is the frequency coefficient, α and δ are the dissipation and instability. Equtation (1) 
is also called as KdV-Burgers -Kuramoto (KBK) equation, and has been widely studied, many 
solution properties have been revealed [3-5]. However, much literature focused on constant 
coefficient, and its partner with variable coefficients was rarely studied: 

( ) ( ) ( ) 0t x xx xxx xxxxu uu t u t u t uα β δ+ + + + = (2)
This equation can model many real problems arising in plasma physics, fluid dynam-

ics and thermodynamics, and this paper aims at solving eq. (2) exactly by the second elliptic 
equation method [6, 7].

Second elliptic equation method

The second elliptic equation method is a more general form of Jacobi elliptic function 
expansion method [6, 7] and the exp-function method [8-10], (G/G ‘)-expansion method [11], 
and the auxiliary equation method [12]. To illustrate the solution process, we consider the fol-
lowing non-linear evolution equation:

( ), , , , , 0t x xx txH u u u u u = (3)

and assume that its solution can be expressed in the form:
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( ) ( ) ( ) ( ) ( )0
1

,
n

i i
i i

i
u x t u a a t bξ φ ξ φ ξ−

=

 = = + + ∑ (4)

where ξ = κx + ωt, and ϕ is the solution:
2 2 3A B Cφ φ φ φ′ = + + (5)

where A, B, and C are all constants:
Case 1. If A = 4, B = –4(1 + m2), C = 4m2. The eq. (5) has a solution ϕ(ξ) = sn2ξ, cd2ξ.
Case 2. If A = 4(1 – m2), B = – 4(2m2 – 1), C = – 4m2. The eq. (5) has a solution  

ϕ(ξ) = cn2ξ.
Case 3. If A = 4(m2 – 1), B = 4(2 – m2), C = – 4. The eq. (5) has a solution ϕ(ξ) = dn2ξ.
Case 4. If A = 4(1 – m2), B = 4(2 – m2), C = 4. The eq. (5) has a solution ϕ(ξ) = cs2ξ.
Case 5. If If A = –4m2 (1 – m2), B = 4(2m2 – 1), C = 4. The eq. (5) has a solution  

ϕ(ξ) = ds2ξ.
Case 6. If A = C = m2 – 1, B = 2(1 + m2). The eq. (5) has a solution

	
( )

( )

2

21
dn
msn
ξφ ξ
ξ

=
±

Case 7. If A = C = 1 – m2, B = 2(1 + m2). The (5) has a solution

 	
( )

( )

2

21
cn

sn
ξφ ξ
ξ

=
±

Case 8. If A = C = 1, B = 2(1 + m2). The eq. (5) has a solution
 

	
( )

( )

2

2

s
1

n
cn
ξφ ξ
ξ

=
±

Case 9. If A = 1, B = 2(m2 – 2), C = m2. The eq. (5) has a solution
 

	
( )

( )

2

2

s
1

n
dn
ξφ ξ
ξ

=
±

Case 10. If A = –(1 – m2)2, B = 2(1 + m2 ), C = –1. The eq. (5) has a solution

	 ( ) ( )2mcn dnφ ξ ξ ξ= ±

Case 11. If A = 1, B = 2(m2 – 2), C = m4. The eq. (5) has a solution

	

( )
( )

2

2
2

c

1

n

m dn

ξφ ξ
ξ

=
− ±

Case 12. If A = 1, B = 2(m2 – 2), C = m4. The (5) has a solution

	
( )

( )

2

2

sn
dn cn

ξφ ξ
ξ ξ

=
±

Case 13. If A = C = 1, B = 2(1 – m2 ). The eq. (5) has a solution

	

( )
( )

2

2
2

c

1

n

m sn dn

ξφ ξ
ξ ξ

=
− ±
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Case 14. If A = B = 0, C > 0. The eq. (5) has a solution

	

( )
( )2

0

4

C c
φ ξ

ξ
=

±
	

The solution process follows the following Steps:
Step 1. The value of n in eq. (4) is determined by the highest derivative of the linear 

term and the non-linear term of the equilibrium eq. (3);
Step 2. Put eq. (4) into eq. (3), and collect coefficients of same powers of ϕ and 

its derivatives, set the coefficients to be zero to obtain a system of algebraic equations for  
a0, ai, bi (i = 0, 1, 2,... n) and κ, ω; 

Step 3. Solve the unknown a0, ai, bi (i = 0, 1, 2,... n) and κ, ω from the aforementioned 
algebraic equations;

Step 4. Exact solutions are obtained. 

The double periodic solution Benny’s equation

Now let’s consider again the exact solution of the variable coefficient Benny equation 
given in eq. (2), where α(t), β(t), and δ(t) are functions of time. By homogeneous equilibrium 
method, the highest derivative term and non-linear term of the equilibrium eq. (2) can be known 
as n = 3, so the equation is assumed to have a solution:

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 31 2

0 1 2 3 2 3,
bb bu x t a a a aω ω ω

φ ω φ ω φ ω
= + + + + + + (6)

where ω is defined:
( ) ( )p t x q tω = + (7)

Putting eqs. (6) and (5) into eq. (2), and setting the coefficients of the same power of 
ϕ and its derivatives to zero, we obtain non-linear ordinary differential equations:

	

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 4
1 1 1

2 4 4 2 4
2 1 2

1 1 1
2 2 2

3 1 3 0
2 2 2

Ap t t a Cp t b t ABp t a t

A p t a t BCp t b t C P t b t

α α δ

δ δ δ

+ + +

+ + + =

	 ( ) ( )2 4
3189 0A p t b tδ =

	
( ) ( ) ( ) ( ) ( ) ( )2 2 4 4

3 2 3
21 105 525 0
2 2 2

Ap t b t A P t b t ABp t b tα δ δ+ + =

	

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 4
2 3 1

4 2 4 4
2 3 3

155 9
2
36965 81 0

2

Ap t b t Bp t b t A p t b t

ABp t b t B p t b t ACP t b t

α δ δ

δ δ δ

+ + +

+ + + =

	

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 4 2 4
1 2 3 1 2

4 4
2 3

3 15 154 16
2 2 2

19542 0
2

Ap t t b Bp t b t Cp t b t ABp t b t B p t b t

ACP t b t BCp t b t

α α α δ δ

δ δ

+ + + + +

+ + =
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 4
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4 4 2 4
1 2 3

3
9 4515 0
2 2

Bp t t b Cp t b t B p t b t

ACp t b t BCp t b t C p t b t

α α δ

δ δ δ

+ + +

+ + + =
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( ) ( )2 2 4 4

3 2 3
21 105 525 0
2 2 2

Cp t a t C P t a t BCp t a tα δ δ+ + =
                          (8)

	 ( ) ( )2 4
3189 0C p t a tδ =

	 ( ) 2
33 0p t b− =

	 ( ) 2 35 0p t b b− =

	 ( ) ( ) ( ) ( ) ( ) ( )2 3
2 1 3 32 4 42 0p t b t P t b b t Ap t a tα δ β− − − =

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 2 0 3 2 3 3 33 5 9 3 3 0p t b b a b Ap t b t Bp t b t xb p t b q tβ β ′ ′ − − − − − − = 

	

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 3 3 3
1 0 2 1 3 1 2 3

2 2

2 2 3 8 15

2 2 0

p t b p t a b p t a b Ap t b t Bp t b t Cp t b t

xb p t b q t

β β β− − − − − − −

′ ′− − =

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
0 1 1 2 2 3 1 2 1 13 0p t a b a b a b Bp t b t Cp t b t xb p t b q tβ β ′ ′ − − − − − − − = 

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
0 1 2 1 3 2 1 2 1 13 0p t a a a b a b Bp t a t Ap t a t xa p t a q tβ β ′ ′ + + + + + + = 

	

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 3 3 3
1 0 2 3 1 1 2 3

2 2

2 2 3 8 15

2 2 0

p t a p t a b p t a b Cp t a t Bp t a t Ap t a t

xa p t a q t

β β β+ + + + + +

′ ′+ + =

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 2 0 3 2 3 3 33 5 9 3 3 0p t a a a a Cp t a t Bp t a t xa p t a q tβ β ′ ′ + + + + + = 

	 ( ) ( ) ( ) ( )2 3
2 1 3 32 4 42 0p t a P t a a Cp t a tβ+ + =

	 ( ) 2 35 0p t a a = 	

( ) 2
33 0p t a =
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Solving the previous algebraic linear equations:

( ) ( ) ( ) ( )
( )
( ) ( )
( ) ( )

2 3 2 3
3

0

2
1

2
1

0

3

3

a a b b

Bp t t xp t q t
a

p t

a Cp t t

b Ap t t

β

β

β

= = = =

′ ′+ +
= −

= −

= −

(9)

So the double periodic solution of the Benny equation with variable coef﻿ficient: 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )2 3 2 2
2 2 2

1 2

4 1 12
12

m p t t xp t q t m p t t
u m p t t sn

p t sn

β β
β ξ

ξ

′ ′+ + +
= − − (10)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )2 3 2 2
2 2 2

2 2

4 2 1 12 1
12

m p t t xp t q t m p t t
u m p t t cn

p t cn

β β
β ξ

ξ

′ ′− + + −
= − + − (11)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )2 3 2 2
2 2

3 2

4 2 12 1
12

m p t t xp t q t m p t t
u p t t dn

p t dn

β β
β ξ

ξ

′ ′− + + −
= − + − (12)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )2 3 2 2
2 2

4 2

4 2 12 1
12

m p t t xp t q t m p t t
u p t t cs

p t cs

β β
β ξ

ξ

′ ′− + + −
= − − − (13)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )2 3 2 2 2
2 2

5 2

4 2 1 12 1
12

m p t t xp t q t m m p t t
u p t t ds

p t ds

β β
β ξ

ξ

′ ′− + + −
= − − − (14)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

2 3 2
2 2

6 2

2
2 2

2

2 1
3 1

1

1
3 1

m p t t xp t q t dnu m p t t
p t msn

msn
m p t t

dn

β ξβ
ξ

ξ
β

ξ

′ ′+ + +
= − − − −

±

±
− − (15)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

2 3 2
2 2

7 2

2
2 2

2

2 1
3 1

1

1
3 1

m p t t xp t q t cnu m p t t
p t sn

sn
m p t t

cn

β ξβ
ξ

ξ
β

ξ

′ ′+ + +
= − − − −

±

±
− − (16)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )22 3 2

2 2
8 2 2

2 1 1
3 3

1

m p t t xp t q t cnsnu p t t p t t
p t sncn

β ξξβ β
ξξ

′ ′− + + ±
= − − −

±
(17)

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

2 3

9

22
2 2 2

2 2

2 2

1
3 3

1

m p t t xp t q t
u

p t

dnsnm p t t p t t
sndn

β

ξξβ β
ξξ

′ ′− + +
= − −

±
− −

±

(18)
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )
( )

2 3
22

10

2 2
2

2 1
3

13 1

m p t t xp t q t
u p t t mcn dn

p t

m p t t
mcn dn

β
β ξ ξ

β
ξ ξ

′ ′+ + +
= − + ± +

+ −
±

(19)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )
( )

2 3 2
4 2

11 2
2

2
2

2
2

2 2
3

1

1
3

m p t t xp t q t cnu m p t t
p t m dn

m dn
p t t

cn

β ξβ
ξ

ξ
β

ξ

′ ′− + +
= − − −

− ±

− ±
− (20)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )

2 3 2
2 2

12 2

2
2

2

2 1
3 1

3

m p t t xp t q t snu m p t t
p t dn cn

dn cn
p t t

sn

β ξβ
ξ ξ

ξ ξ
β

ξ

′ ′+ + +
= − − − −

±

±
− (21)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )
( )

2 3 2
2

13 2
2

2
2

2
2

2 1 2
3

1

1
3

m p t t xp t q t cnu p t t
p t m sn dn

m sn dn
p t t

cn

β ξβ
ξ ξ

ξ ξ
β

ξ

′ ′− + +
= − − −

− ±

− ±
− (22)

( ) ( )
( ) ( ) ( )

( )
2

14 2

0

43
xp t q t

u Cp t t
p t C c

β
ξ

′ ′+
= − −

±
(23)

where ξ = p(t)x + q(t).
–– When m → 1, snξ → tanhξ, cnξ, dnξ ← sechξ. Therefore, the soliton solution of eq. (2) can 

be obtained:
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )3 2
2 2

15 2

8 12
12 tanh

tanh
p t t xp t q t p t t

u p t t
p t

β β
β ξ

ξ
′ ′+ +

= − − (24)

( ) ( ) ( ) ( )
( ) ( ) ( )

3
2 2

16

4
12 sech

p t t xp t q t
u p t t

p t
β

β ξ
′ ′+ +

= − + (25)

( ) ( ) ( ) ( )
( ) ( ) ( )

23
2

17

4 sech12
tanh

p t t xp t q t
u p t t

p t
β ξβ

ξ
′ ′+ +  

= − −  
 

(26)

( ) ( ) ( ) ( )
( )

3

18

4 p t t xp t q t
u

p t
β ′ ′+ +

= − (27)

( ) ( )
( )

( ) ( ) ( )22
2 2

19 2 2

1 sechtanh3 3
tanh1 sech

u p t t p t t
ξξβ β
ξξ

±
= − −

±
(28)
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( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )23 2

2 2
20 2 2

2 1 sechtanh3 3
tanh1 sech

p t t xp t q t
u p t t p t t

p t
β ξξβ β

ξξ

′ ′+ + ±
= − −

±
(29)

( ) ( ) ( ) ( )
( ) ( ) ( )( )

3
22

21

4
3 sech sech

p t t xp t q t
u p t t

p t
β

β ξ ξ
′ ′+ +

= − + ± (30)

( ) ( ) ( ) ( )
( ) ( ) ( )

3
2

22

2
6

p t t xp t q t
u p t t

p t
β

β
′ ′+ +

= − (31)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )23

2
23 2

8 sech
3

tanh
p t t xp t q t sch

u p t t
p t

β ξ ξ
β

ξ
′ ′+ + ±

= − − (32)

( ) ( )
( ) ( ) ( )

( )
2

24 2

0

43
xp t q t

u Cp t t
p t C c

β
ξ

′ ′+
= − −

±
(33)

The soliton solution is shown in figs. 1-4.
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It can be seen from the aforementioned four images that when x and t take different 
values, the solitary wave propagation direction and soliton morphology are varied greatly. The 
two peaks in figs. 2-4 are all anti-symmetric, and the upper and lower sides are symmetrical, 
with significant periodic changes. 
–– When m → 0, snξ → sinξ, cnξ → cosξ, dnξ → 1. Therefore, the periodic solution of the  

eq. (6) can be obtained:
( ) ( ) ( ) ( )

( )
( ) ( )3 2

25 2

4 12
sin

p t t xp t q t p t t
u

p t
β β

ξ
′ ′+ +

= − (34)

( ) ( ) ( ) ( )
( )

( ) ( )3 2

26 2

4 12
cos

p t t xp t q t p t t
u

p t
β β

ξ
′ ′+ +

= − (35)

( ) ( ) ( ) ( )
( ) ( ) ( )

3
2

27

8
24

p t t xp t q t
u p t t

p t
β

β
′ ′+ +

= − + (36)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )22 3 2

2
28 2

8 1 12cos12
sin cos

sin

m p t t xp t q t p t t
u p t t

p t
β βξβ

ξ ξ
ξ

′ ′− + + +  
= − − 

   
 
 

(37)

( ) ( ) ( ) ( )
( ) ( ) ( )

23
2

29

4 112
sin

p t t xp t q t
u p t t

p t
β

β
ξ

′ ′+ +  
= −  

 
(38)

( ) ( ) ( ) ( )
( ) ( ) ( )

3
2

30

2
6

p t t xp t q t
u p t t

p t
β

β
′ ′+ +

= − + (39)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 23
2 2

31

2 cos 1 sin3 3
1 sin cos

p t t xp t q t
u p t t p t t

p t
β ξ ξβ β

ξ ξ
′ ′+ +    ±

= − − −   ±   
(40)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 23
2 2

32

2 sin 1 cos3 3
1 cos sin

p t t xp t q t
u p t t p t t

p t
β ξ ξβ β

ξ ξ
′ ′+ +    ±

= − − −   ±   
(41)

( ) ( ) ( ) ( )
( ) ( ) ( )

23
2

33

4 1 13
sin

p t t xp t q t
u p t t

p t
β

β
ξ

′ ′+ +  ±
= −  

 
(42)

( ) ( ) ( ) ( )
( ) ( ) ( )

23
2

34

4 1 13
cos

p t t xp t q t
u p t t

p t
β

β
ξ

′ ′+ +  ±
= −  

 
(43)

The graph part of the periodic solution of the trigonometric function of eq. (2) is 
shown in figs. 5 and 6.

As can be seen from that figures, the waveform of each image moves along an obvious 
track. Figure 5 shows a semicircular track, and fig. 6 gives a broken line track. The solution 
morphology sees both maximum and minimum. From the aforementioned analysis, it can be 
seen that most of the images have a certain regularity, which is the basic feature of periodic 
solutions and fully demonstrates the diversification of images of periodic solutions.
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Conclusions and discussion

In short, the Benny equation has extremely rich in the solution properties, such as dou-
ble periodic solutions, and soliton solutions of triangle function periodic solutions. These new 
analytical solutions can be degraded into corresponding soliton solutions and triangle function 
periodic solutions, respectively, when m → 1, m → 0. The solution process shows the present 
method is extremly effective to non-linear equations with variable coefficients, and it can be 
extended easily to fractional calculus and fractal calculus [13-20].
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