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The convection-diffusion process in porous electrodes depends greatly upon the 
porous structure. A fractal model for porous catalyst in a thin-zone bed reactor is 
established using He’s fractal derivative, and a variational principle is also estab-
lished in a fractal space, and an approximate solution is obtained. Additionally an 
ancient Chinese algorithm is adopted to solve an algebraic equation. 
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Introduction

Porous flows are widely used in engineering to enhance heat, mass and electron trans-
fer, the porous structure or surface morphology can be used to control convection-diffusion 
process in porous electrodes [1, 2]. 

The continuum assumption, which is widely used in the fluid mechanics to establish 
governing equations, becomes invalid for a porous medium, so the traditional differential mod-
els cannot describe the porous effect on the flow properties. This paper suggests a fractal model 
for porous catalyst in a thin-zone bed reactor:
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where M is the dimensionless moment and k – the Damkohler number, the fractal derivative is 
defined [3-10]:
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where α is the two-scale dimension, Δx – the smallest porosity, and porous size less than Δx is 
ignored. 
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When α = 1, eq. (1) becomes the traditional model for porous catalyst in a thin-zone bed reactor 
[1]:
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Variational principle 

The variational principle for eq. (5) can be established by the semi-inverse method 
[11-15]:
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Its stationary condition:
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where M′ = dM/dx, and L is the Lagrange function given:
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Submitting eqs. (10) and (11) into eq. (8) results in the following Euler-Lagrange 
equation:
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which is equivalent to eq. (5)
Similarly the variational principle for eq. (1):
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Its stationary condition:
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where M(α) = dM/dxα, and L is the Lagrange function given:
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it is obvious:

e ML k k
M

−∂
= − +

∂
(16)

( )
( )

L M
M

α
α

∂
=

∂
(17)

Submitting eqs. (16) and (17) into eq. (14) results in the Euler-Lagrange equation:
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which is equivalent to eq. (1).

Two-scale transform

The model by Constales et al. [1] (α = 1) was derived by the continuum assumption, 
and it can be considered as an approximate model. To describe the effect of porous geometry on 
M, the porous structure must be considered, e. g., we must model the process on a much smaller 
scale. In eq. (3), Δx is the smallest porous size. The two-scale transform [3-5]:

X xα= (19)
Here x is the small scale to model porous effect, while X is the large-scale for the con-

tinuum assumption. The two-scale transform is to convert a fractal space on a small scale to a 
continuous space on a large-scale. 

The variational formulation on the large-scale becomes:
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Its Euler-Lagrange equation:
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This is the traditional model derived by [1]:
We assume that the solution can be expressed:

2
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Submitting eq. (22) into eq. (20), we obtain:
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The stationary condition of eq. (23):
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From еq. (24) a can be solved by some a mathematical software. Here we use an an-
cient Chinese algorithm to solve a approximately [16, 17]. To illustrate the solution process, we 
consider the case of k = 1 and M0 = 1. The ancient Chinese algorithm is to guess two arbitrary 
roots, saying а1 = 1/2 and a2 = 1/3, the residuals of еq. (24), respectively:
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and
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The ancient Chinese algorithm predicts an approximate value:
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We obtain an approximate solution:
2( ) 0.711 0.289M X X= + (28)

Alternatively we can approximate e–M in the form:
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The variational formulation becomes:
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	 In view of eq. (23), we have:
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Its stationary condition:
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Finally we obtain the approximate solution:
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Discussion and conclusion

We can also use the fractal variational principle given in Eq. (13) to find an approxi-
mate solution. We assume:

2
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Submitting eq. (37) into eq. (13), we obtain:

{ }
1

2 2 2 2
0 0

0

( ) 2 + exp( )+ ( ) dJ a a x k M a ax k M a ax x
α

α α α α

α

= − + − − +∫ (38)

The stationary condition of eq. (38):
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From eq. (39), a can be determined in a similar way as previously discussed. To im-
prove the accuracy, a higher order approximate solution can be assumed: 
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It is obvious that Eq. (40) satisfies the initial conditions. Substituting Eq. (40) into Eq. 
(13), and setting:
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we can solve ap (p = 2 ~ N) from the previous algebra equations. 
From eq. (36), we have:

2 1
0

2
2 2

02

3
2 3

03

d ( ) 0.54054
d

d ( ) 0.54054 (2 1)
d

d ( ) 0.54054 (2 1)(2 2)
d

M x kM x
x

M x kM x
x

M x kM x
x

α

α

α

α

α α

α α α

−

−

−

=

= −

= − −

(42)

It is obvious:
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The properties given in eqs. (43) and (44) cannot be revealed by any continuum mod-

els. Similar phenomena were also observed in porous electrodes [18, 19]. 
To be concluded, this paper for the first time ever suggests a fractal model for porous 

catalyst using He’s fractal derivative, the obtained solution shows that the order of the fractal 
derivative affects greatly the solution property, and it can be used to control the convection-dif-
fusion process. 
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