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The Sharma-Tasso-Olver equation with a new time fractal derivative is studied. 
The fractal Laplace transform, Adomian’s decomposition method and He's poly-
nomials are used to solve the equation. The results demonstrate efficiency and re-
liability of the proposed method. 
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Introduction  

In recent years, many researchers have recognized that a classical differential model 
is not suitable for problems for anomalous thermal diffusion, transport, and fractal time ran-
dom walks. To deal with the aforementioned problems, fractal calculus is built by several au-
thors by using different methods [1-7]. Much achievement has been obtained, for examples, 
Schrodinger equation, Fokker-Planck equation, and Laplace equation on fractal set were de-
rived [8-10]. Also, Hamilton mechanics and Lagrange mechanics were built on fractal sets by 
using F calculus [11]. 

The classical Sharma-Tasso-Olver (STO) equation plays a very important 
role in studying thermal conductivity of magnetic fluids [12, 13]. However, if we study 
the motions in a fractal medium, the fractal derivative has to be adopted. The present 
study is motivated by the desire to obtain an approximate analytical solution of the fol-
lowing STO equation involving a time fractal derivative: 
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with the initial condition: 

 [ , (0)] ( )Fu x S x =  

where 0    1 is a constant, Dt
 – the Caputo time fractal derivative [7], and  is the -di-

mension of a fractal set. 
The aim of this work can be achieved by using fractal Laplace transform [7], 

Adomian’s decomposition method (ADM) and He's polynomials [14-17].  
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Fractal derivative  

The fractal derivative is an extension of classical derivative for fractal sets. There 
are many definitions of fractal derivative. In this section, we recall several definitions, which 
are frequently used. 

Definition 1. Chen’s definitions is defined as follows [18, 19]: 

 d ( ) ( )lim
d s x
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−
=
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where  is the order of the fractal derivative.  
Definition 2. Consider a fractal medium and assume the smallest measure is L0 (any 

discontinuity less than L0 is ignored). This fractal derivative has the form [4]: 
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When 1 →  and 0 0L → , eq. (3) turns out to be the ordinary differentiation. 
We next recall the Caputo fractal derivative which will be used in this paper. Let a0 

be an arbitrary but fixed real number. The integral staircase function ( )FS x of order  for a 
fractal set F is given by [5]: 
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Definition 3. The F derivative of ( )f x at x is defined as [5]: 
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Definition 4. Let ( ) [ , ],f x C a b  then the Caputo fractal derivative is defined by 
[7]:  
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where the Gamma function with the fractal support is understood: 
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Definition 5. Fractal Laplace transform of the function f(x) is defined [7]: 
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The following Laplace transform formulas hold true [7]:  
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 1[ ( )] [ ( )] [ ( ) ( ( )] [ (0)]F x F F F FL D f x S s L f x S s f S       −= −  (10) 

Adomian’s decomposition method 

In this section, we give a brief presentation of the ADM. The method is usually used 
for solving non-linear operate equation of the form [14, 15]: 

 ( )u N u= +  (11) 

where N:→ is a non-linear mapping from Banach space  into itself and    is known.  
The ADM admits the use of infinite decomposition series: 
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with , ,nu n   for the solution ,u  and the infinite series of:  
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for non-linear terms N(u), where the components un of the solution u will be determined re-
currently, and Hn are He's polynomials, which can be generated by:  
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Thus: 

 0 0( )H N u=  

 1 1 0( )( )H u DN u=  
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and so on, where 0( )rD N u denotes the rth Frechet derivative of N at 0 .u   
Substitute eqs. (12) and (13) into eq. (11) gives: 
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which is satisfied formally if we take: 

 0u =  (16) 

 1n nu H+ =  (17) 
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In this way, we finally obtain the solution that can be approximated by the partial 
sum: 
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Solutions of eq. (1) 
Let  
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Then eq. (1) can be rewriten: 
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Applying the fractal Laplace transformation on both side of eq. (19), we get: 
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Denoting: 

 [ ( , )] ( , )F FL u x t U x s =  

and using the property of the fractal Laplace transformation, we get: 
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or 
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By computing the inverse fractal Laplace transform, we conclude: 
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We assume that the solution ( , )u x t can be expanded as: 
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and non-linear term: 
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where  
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and so on.  
From eqs. (16) and (17), it is easy to determine un: 

 0 ( )u x=  (26) 
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where 1,2,3, .n =  
Finally, the solution ( , )u x t is given by: 

 0 1 2( , ) ( , ) ( , ) ( , )u x t u x t u x t u x t= + + +  (28) 

In order to demonstrate the efficiency of the previous method, we consider the fol-
lowing STO equation involving time fractal derivative: 

 
3

3
3D ( , ) 3 ( , ) 0t

u u
u x t u x t u

x x x

    
+ + + =    

 (29) 

with the initial condition: 
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By the aforementioned algorithm, we first assume that the solution ( , )u x t can be ex-
panded as an infinite series: 
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and so on.  
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Finally, we obtain the solution: 

 0 1 2( , ) ( , ) ( , ) ( , )u x t u x t u x t u x t= + + +  

For example, we can use:  
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as the approximate solution of eq. (1).  
When  = 1,  = 1, by direct substituting eq. (31) into eq. (29), we have found that 

the approximate solution is very close to the exact solution.  

Conclusion 

We extend the classical model of STO to the new model of time fractal STO. By us-
ing fractal Laplace transform, Adomian’s decomposition method and He's polynomials, we 
present a general algorithm for the new model. The approximate solution of the new model is 
obtained, which leads to the classical ones when  = 1,  = 1. The algorithm described in this 
paper is expected to be further employed to solved other non-linear differential equation in-
volving Caputo fractal derivatives. 
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