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Fractional Fokas equation is studied, its exact solution is obtained by the direct
algebraic method. The solution process is elucidated step by step, and the frac-
tional complex transform and the characteristic set algorithm are emphasized.
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Introduction

In recent decades, the non-linear fractional PDE have attracted much attention due to
their wide applications to various complex phenomena arising in elasticity, plasma physics,
solid state physics, gas dynamics, material, and others [1-10]. Searching for their exact solu-
tions is an important topic in both mathematics and engineering. A wealth of methods have
been developed for this purpose, for examples, the homotopy perturbation method [11-17],
variational iteration method [18-20], the exp-function method [21-25], He-Laplace method
[26-28], the symmetry reduction method [29-31], the reproducing kernel method [32, 33], and
others [34-36].

In this paper, solitary wave solutions of space-time fractional Fokas equation [37]
are considered. The direct algebraic method [38, 39] is used to solve the equation, which leads
to a large system of algebraic equations, the characteristic set algorithm [40-42] is adopted to
solve the algebraic equations.

The direct algebraic method

There are many types fractional derivative in literature, for example the Jumaries’s
modification of the Riemann-Liouville derivatives of fractional-order « is defined by [1]:

Def®)= - )dtj(t OGO -FO1dE  O0<a<l

where f(t)is a real and continuous function defined on R.
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The He’s fractional derivative defined [43, 44]:
D“f()— (s—t)"*[f,(s)- f(5)lds O<a<l
—a)dt"y f

We outline the main steps of the direct algebraic method [38, 39] with modified
Riemann-Liouville derivative for finding exact travelling solutions of fractional-order non-li-
near PDE.

Consider the fractional-order non-linear PDE:

Q(U,D?U,DQU,DQU,“ 'athau:DilauaD)z(zau"“) =0 (1)
where Q is a polynomial of u and its fractional derivatives.
Step 1. The fractional complex transform [45, 46] is used:
u(t’xlax2""axn) = U(g),
a a a a 2
_oar ke ks ke )
'+a) T'l+a) T'l+a) I'l+o)

where ¢, ki, K, ..., kn are arbitrary constants, the eq. (2) transform eq. (1) into an ODE:
Q(u,cu’, kU’ ku',---,c2u’, k2" k2u',--) =0 3)

Step 2. We look for exact solution of eq. (3) in the form:

N .
u($)=> BQ(&', by =0 4)

i=0

where b, (0<i<N) are constants to be determined, and Q(&) satisfies the ODE in the form
[39]:

Q (&)=Ln(A)[a+pQ(E) +oQ(£)’],  A=0,1 )

Step 3. By balancing the highest order derivative terms with the non-linear terms of
the highest order in eq. (3), we can evaluated the value of the positive integer N.

Step 4. By substituting eqgs. (4) and (5) into eq. (3) and equating all the coefficients
of same power of Q(<£) to zero, we obtained a system of algebraic equations. The obtaining
system can be solved to find the value of ¢, ki, kz, ..., Ko, (0<i1 < N), substituting these
terms into eq. (4), the determination of solutions of eq. (1) will be completed.

Exact solutions of space-time fractional
Fokas equation

Consider the following space-time fractional Fokas equation [37] which could be
used to describe various physical phenomena such as fluid mechanics, water wave theory,
ocean dynamics and many others.

oy o*u o*u d“u 8”u o*u *u

4 3 +— + ~——+12u -6 =0 (6)
ovox’ ooy oxTox" OX;" OX3' oxj'oxy oy oy;

The fractional complex transform is:
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U(X1=X2’Y1>Y2at)=u(§)s
ek ket by Ly M
'+a) T'l+a) Tl+a) T'(+a) T'(l+a)

where C, ki, K, ..., kn, are arbitrary constants, and C,k;,k,,-+, Kk, # 0. Using the wave variable
(7), eq. (6) becomes:

4ok, u "k kou® +kkau™ + 12k k, (U')* +12k kouu "= 6l Lu" =0 ®)

Integrating eq. (8) twice with respect to & and setting the integration constant as ze-
ro, we get:

(4ck, — 611, )u + 6k kou? + kK, (—kZ +k3)u"=0 ©)
Suppose that the solution of eq. (9) can be expressed:
N .
ug)=> b (10)
i=0

where b, (0 <i < N)are constants to be determined, such that by # 0.

Consider the homogeneous balance between the highest order derivative u® and
non-linear term uu' appearing in (9), we have N =2, we then suppose that eq. (9) has the fol-
lowing solutions:

u&) =by +bQAE +b,QE)°, b, %0 (11)

Substituting eqs. (11) and (5) into eq. (9) and collecting all the terms with the same
power of Q(&) together, equating each coefficient to zero, yields a set of algebraic equations,
which is large and difficult to solve, with the aid of the characteristic set algorithm [40, 41],
we can distinguish the different cases namely:

Case 1.

[4ck, — 61,1, + kK, (—k +k3) B In(A)* T
16k7k3 (ki — k3 )a* In(A)?

2

_ —4ck B+ 6L, 8 +kky (k7 —k3)B’ In(A)?

b 4k k, o

_ —4ck, + 611, + Kk, (k7 —k3) 8% In(A)?

b
0 4k k,

oo oll, + klkz(kl2 - k22)(ﬂ2 —4ao) ln(A)2 bl o -4ck1B+6l112p+k1k2(k12-k22)B3Log[A]?
B 4k, ak1k2a

Case 2.

. [4cki =6l + Kk (K7 —k;) 3% In(A)°T*
> 16k2k2 (k2 —k2)a? In(A)>?
1 ™2 N 2
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o, 4k B =6l +kiky (K7 —k5) 8 In(A)*
1 4k K,

o _ 4ok — 6Ll + 3k k, (ki —k3)8% In(A)?
0 12k,k,

1

c= 5[6:(;'2 + Ky (K + K3 (B - 4aa)ln(A)2}
Case 3.
b, = (k7 —k3)o? In(AY’, by = (k7 —k3)BoIn(A)’

b =0, o= Stk (d KA A?
b 4k1 b

Case 4.
b, = (k' —k3)o” In(A?, by =(ki —k3)BoIn(A)

o 2ok +3hh 6l +kky (K 4k (A
O 3kk, 4k, ’

For the sake of simplicity, we consider only the solution with respect to Case (1), the
other solutions can be obtained in a similar way:

—  when 8% —4ac <0ando #0:

1 FU? 2 1 Fv? 28V
U=_Fl—> 2 2_ﬂU+4’u2=_F 2 2.2 N +4
4 | ao"In"(AK —ky) ao 4 | a‘o"In"(AK —ky) ao

1 = i ] Lzaz 1;(2AA/)12;2 ) 2/30‘(\2/1) ' 4}

U2 = i " Ltzo'z 1:2(1/\//5();2 K M‘SZ o 4}
U = i " Lﬂ& 1;((2();5 k) Zﬂ‘i‘)’( . 4}
= Lzaz 1:2((13();5 k) Tuo 4}

us=F FY” - +1
> 1622 A (AYKE —K2)  4ac
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where

BkK, In? (A)(KE —k3)—4ck, + 61,1,

M =4ac— >, F =

V :ﬁ+\/mcota(\/?§

IM¢

2

W2 :,B+\/Mpqseca(N§)—Ntana[

J , W1 :—,B+\/M_pqseca(«/m§)+\/mtana[

, U =ﬂ—Ntana[@]

Im¢
2

|
|

X1 =ﬂ+Ncota(N§)—csca(N§)\/M_pq
X2=,B+Ncota(N§ +csca(N§)\/M_pq

N

2 ‘}’:J—Ntana[mg

4

Y :2/3+Ncota[

when % —4ac>0ando # 0:

|

1 FU? 28U 1 Fv? 2V
Uo =7 2 2.2 2 2y 4y =2Fl S 2.2y +4
4 | ao"In"(Ak —-k;) ao 4 | oo In“(A)K{ -ky) ao

1 [ F(W1)? 28(W1) ]
Ug = Fl—— 2( )2 N A )+4
4 | a“c”In"(A) ki —k3) aoc |
1 [ F(W2)2 28(W2) |
Uy =~ F| —— 2( )2 2_,3( )+4
4 | a’o”In"(A) ki —k3) aoc
1 [ F(X1)? 2B8(X1) |
Uy =~ F| —— 2( )2 2_ﬂ( )+4
4 |a‘o"In"(AXk| —ky) ao |
1 [ F(X2)? 28(X2) ]
Upp =7 F|—— 2( )2 2y PED) 1 g
4 |a‘o"In*(Aki -k;) aoc
Fy? LY
Uy =F 2 2,2 2 2y +1
l6a”c” In“(A)K{ —ky) 4aoc
where
2 2 2 2
ki~ —ky)—4ck Il
N = £ —dao, F:ﬂ kik, In (A)(ikkz) C1+612’ U=ﬂ+\/ﬁtanha[§\éﬁj
1K
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V =ﬁ+\/ﬁcotha{§\éﬁj , W1 =ﬂ—i\/ﬁ\/Esecha(é‘\/ﬁ)Jr\/ﬁtanha(g\/ﬁ)

W2 =ﬂ+iﬂﬁsecha(fm)+\/ﬁtanha(§\/ﬁ)
X1 =ﬁ+«/ﬁcotha(§«/ﬁ)—ﬂﬁcscha(§\/ﬁ)
X2 =ﬂ+\/ﬁcotha(§\/ﬁ)+\/ﬁ\/ﬁcscha(§«/ﬁ)

Y = 2ﬂ+\/_cotha(§\/_J+\/_tnh [5*/_J
— when ao>0and =0

thana(fj\/ao)z cmota(gf\/aa)z
Uy = +F, u,=
acn?(A)k1* —k2%) acn?(A)(k1* —k2%)

F{ \/a?seca(zgm)i ﬁtana(zgm)}z .

a? In* (A) (k1> —k2%)

Ujzp =

2
F2 {, ’gcota(2§x/a0') +csca(RENao) apq}
o o

+F
a? In* (A) (k1> —k2%)

Ugip =

2
cota( f«/_)—tana( 5@)}
{ +F, and F=M

u =
s~ 4o In? (A) K1 —k2?) 4k k,

— when aoc<0and =0

F2tanha(§\/—0a7)2 s = E — cmotha(fxl—om')2

Ug=F— , Uy =
0 acn®(A)k1® -k22)” acn(A)k1? -k2?)
2
F2{ ’—a—pqsecha(ZgZ\/—aO') Ti ’—atanha(2§\/—ad)}
e o =F — o o
1512 a® I (A)(k1* —k22)
2
F? { /—gcotha(2§\/—ao—) + cscha(2EN—ao) _apq}
(o2 O
Ug_12 = +F

a? In* (A) (k1% —k2%)
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{cotha( N )+tanha( 5\/—01_0')}2

4aon?(A)(k1* —k2%)

—4ck, + 61,1,

— when f=0ando=a:
Ftana(a&)? Fcota(aé)?
2 o U == 2 .2
a* In? (A)(k; —k? ) a” In“(A)Kk —ky)

F?2 [tana(2a§) + \/_ seca(2a§)]
o’ I (A)K? —k2)

F2 [cota(zag) +/pa csca(2ac§)]
o’ In? (A)(k1 k2)
2
F2 {cota (ij - tana(ofﬂ 4
Uys = ~ /] 4F, and F okt 6l
4a” In" (A —ky) 4k,k,
— when f=0ando=—«

Uy =

Uy 12 =

Upy1p =

Ftanha(aé)? N _ Fcotha(aé)?
A(AK k) T oI (AR kD)

26 —

F2 [\/p_qsecha(Zaf) + itanha(20:§)]2
o In* (A)(K? —Kk3)

Uy 1o =F —

F2 [cotha(2a§) +./pa cscha(2a§)]
o In? (AYK? —k3)

2

= {cotha (OfJ + tanha [ajﬂ Ack + 611

Usp = 3 3 3 +F s and F = _1——'_12
4a” In” (A)(K —k3) 4k k,

Upg_12 =

—  when g% =4ac:

{ 4 AF[BEIn(A) + 2 }
31 = + 3 5 -1
BEWM(A)  pAE It (MK —K3)

where

Bk, In? (AY(K] — k3 ) —4ck, + 61,1,
4k k,

F:
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— when f=k,a=mk(m=0)and o =0:
2, pkE N2 ke
F~(A*™ —m) N F(A m)+F

u =
2 em I (AYKE —k2) m
where
o k2k;k, In* (A) (ki —k3)—4ck, + 6,1,
— when f=0=0:
F2g2
Uy =———+F
33 klz _ k22
where
o —4ck, +ol,1,
4k,k,
Remark 1. The generalized hyperbolic and triangular functions are defined [38, 39]:
: pA* —gA™* PA® +gA™* pAS —gA ™
sinha({)=——, cosha({)=—, tanha()=——"—
(&)= (&)= = ron
pAs + QA 2 2
cotha(§)=————~, secha(l)=————~, cscha(l)=——F——
© pAS —gA~¢ ¢ PAS +QA~¢ d PA® —gA~*
. _ pA< —gA T _ pA“ +gA " _ . pA¥ QA"
sina(&) = Y cosa(é) = Y tana(s) =i —pAi‘f . qA‘ig ,
. pA +gA ¢ 2 2i

cota(g)=l—57—+, secad(g)=——F—, cscad(§)=—7+
9 oAE g e (6) oA+ A 9 oAE g

where ¢ is an independent variable and p,q > 0.

Conclusion

In this paper, we use the direct algebraic method combined with characteristic set
algorithm to solve the space-time fractional Fokas equation, a abundant of exact solutions are
obtained, to the best of our knowledge, the solutions we obtained have not been reported in
literature.
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