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Introduction  

Solid oxide fuel cells (SOFC) [1-4] are mainly formed by a mixture of an ionic con-

ductor and an electronic conductor. According to Ohm’s law, the charge transfer in two phas-

es is: 

 ion ion el el( ) ( ) j    −  =   =  (1) 

where   is the potential,  – the conductivity, the subscripts ion and el refer to ion ionic con-

ducting phase and the electronic conducting phase, respectively, and j – the electrochemical 

reaction rate, which can be described by the following Butler-Volmer (BV) equation [1]: 

 0 (e e )j j  −= −  (2) 

where   is the overpotential defined as the potential difference between the two phases, 
and   – the temperature-related constants.  

For 1-D case, the electrode-level charge transport model in dimensionless form can 

be expressed [1]:  
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 0(0)y N =  (4) 

 1(1)y N =  (5) 

where y is dimensionless overpotential, / ,x l =  x – the co-ordinate in the thickness direction,  

l – the electrode thickness, k,  ,  , 0N  and 1N  – the constants, whose physical meanings are 

given in [1].  

Bao and Bessler [1] applied the Adomian decomposition method to the aforemen-

tioned system, some alternative approaches to the problem include the variational iteration 

method [5, 6], the homotopy perturbation method [7, 8], and others, see a complete review on 

various analytical methods in [9-12].  

Accurate model and computational efficiency are highly needed to optimize elec-

trode-level and cell-level systems and to control fuel cells, however the aforementioned model 

cannot take into account the effect of porous structure of electrodes on its properties, a fractal 

modification is much needed, and a fractal variational principle is established in this paper.  

Fractal electrode-level charge transport model 

Equation (1) cannot model the effect of the porous structure and unsmooth boundary 

of electrodes on the charge transport. It was reported that the surface morphology will greatly 

affect mass, heat and ion transport [13, 14]. Considering the porous electrodes, we modify 

eq. (1): 

 ( , , ) ( , , ) ( , , ) ( , , )
ion ion el el[ ] [ ] j               −  =   =  (5) 

where 
( , , )    is defined: 
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  

  

  
 = + +

  
 (6) 

and the fractal derivative is defined [15-17]: 
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where   is the two-scale dimension, x  – the smallest porosity, and porous size less than 
x  is ignored. 

A fractal modification of eqs. (3)-(5) gives: 
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Fractal calculus becomes a useful tool to modeling discontinuous problems [18-21].  
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Fractal variational principle  

The variational principle is an effective approach to non-linear problems [22-26]. 

Using the semi-inverse method [22-26], the following variational principle can be obtained:  

 

21

0

1 d 1 1
( ) e e d

2 d

y yy
J y k   




 

−
    

= + +    
    
  (11) 

Proof. The stationary condition of eq. (11) is: 
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where ( ) d /d ,y y =  L is the Lagrange function defined: 
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Equation (12) leads to the following Euler-Lagrange equation: 
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which is eq. (8).  

We assume that the solution can be expressed: 

 2ln( )y a b c  = + +  (15) 

The boundary conditions, eqs. (9) and (10), become: 

 0 0
b

N
a
− =  (16) 

 1
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b c
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+
− =

+ +
 (17) 

Equations (16) and (17) can be written in simpler forms:  

 0( , , ) 0g a b c b aN= − =  (18) 

 1( , , ) 2 ( ) 0h a b c b c N a b c= + − + + =  (19) 

Putting eq. (15) into eq. (11) results in: 
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The variational principle of eq. (11) under constraints of eqs. (9) and (10) become an 

optimal problem to minimize J(a,b,c) under the constraints of eqs. (18) and (19). The station-

ary conditions are [27, 28]: 

 d d d 0a b cJ a J b J c+ + =  (21) 

 d d d 0a b cg a g b g c+ + =  (22) 

 d d d 0a b ch a h b h c+ + =  (23) 

where the subscript denotes the partial derivative, e. g.: 
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For arbitrary da, db, and dc, we have the following stationary condition [27, 28]: 

 , ,, , 0

a b c

a b c a b c

a b c

J J J

J g h g g g

h h h

  = =  (24) 

where , ,, , a b cJ g h   is the bracket. Its properties are discussed in [28]. It was also called as 

He-bracket in [29].  

Solving eqs. (18), (19), and (24) simultaneously, the constants, a, b, and c, may be 

easily determined. As a result, the overpotential distribution, eq. (15), is obtained.  

As illustrating examples, we consider three simple cases to show the solution pro-

cess.  

Case 1. 0 1 1.k N N = = = = =
 Under the assumption, from eqs. (16) and (17), we 

have a = b and a = c, and eq. (20) can be simplified: 
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The stationary condition of eq. (25) reads:  
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From which we can identify a easily:  
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So the overpotential distribution across the thickness of the electrode becomes: 

 2ln[0.574(1 )]y   = + +  (28) 
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Case 2. 1 1,k N = = = =
 and 0 0N = . Similarly we have b = 0, c = a, and: 
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Making the function, eq. (29), stationary, we can identify a, which is: 
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As a result, we obtain: 

 2ln[0.767(1 )]y = +  (31) 

 
Case 3. 1 1,k N= = =

 and 0 0N = , and   it to be determined optimally to satisfy: 

 ( 1)y y = =  (32) 

where y  is prescribed overpotential at 1 = .  

By a similar calculation, we have: 

 2( ) ln[ (1 )]y c  = +  (33) 

and 
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The stationary condition with respect to c is:  
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From eq. (35), the constant, c, can be identified:  
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As a result, we have: 
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By eq. (32), we have:  
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For a fixed 
,y
 from eq. (38) α can be determined, see tab. 1.  

Table 1. Values of α for different 
y

 

Discussion and conclusion  

From eq. (28), we have:  
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It has the following property:  

 
1, 1d
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When 
1, 

 a sudden rise of potential is predicted. This property cannot be revealed 

by classical models. Additionally the variational approach guarantees the optimal state of all 

possible states (a, b, c) in eq. (15) and validness of its solution for the whole solution domain. 

Other trial functions are also permitted, for example:  

 
0

( )
N

i
i

i

y a  
=

=  (41) 

where ai are constants to be further determined using some a mathematical software, e. g., 
MATLAB (MathWorks, Natick, MA).  

If a higher accurate solution is required, we can assume that: 

y  0.4402 0.4285 0.4166 0.4046 0.3925 0.3805 0.3687 0.3571 0.3458 

Α 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
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where ai can be determined in a similar way as illustrated previously. The obtained solu-

tion can be used to optimally design and control fuel cells.  
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