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This paper elucidates the main advantages of the exp-function method in finding
the exact solution of the non-linear Schrodinger equation. The solution process is
extremely simple and accessible, and the obtained solution contains some free
parameters.
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Introduction

The non-linear Schrodinger equation is widely studied in physics, mathematics and
engineering [1-9], which is a non-linear parabolic PDE, and it is difficult to solve it explicitly,
though there are many analytical methods available in literature to have an approximate solu-
tion, such as the variational iteration method [10, 11], the homotopy perturbation [12, 13], the
variational approach [14-20], and the others, a complete review on various analytical methods
is available in the review articles [21]. An explicit and exact solution is much needed in prac-
tical applications, this paper adopts the exp-function method for this purpose.

Exp-function method
In this paper, we consider the following non-linear Schrodinger equation [22]:

iqt + iaQXxx + quxxx + F(|q|2)q =0 (l)

where a and b are coefficients that are real parameters, and F represents a general form of the
intensity dependent refractive index.
We introduce a complex variation defined as:

ax.t) = g(£)e'* )
where
E=x-vt 3)
where v is the velocity of the solution. The phase portion of the pulse is given by the form:
o(X,t) = —kx + wt 4
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Here, k is the soliton frequency and w is the soliton wave number. The following
equation is obtained:

a _ _vg e +ipgei#txD ©)
ot
00 ip(xt)  ipmaio(Xt)
— =g —jkge'" 6
PVl g (6)
o’q (1) oiLaioO) 12 maie(X)
ax—2=ge —2ikg'e —k“ge @)
’q (1) miemaig(X) 2 ioOt) | iL3maio(X)
gzg e —3ikg"e -3k°ge +ik°ge (8)

Substituting egs. (5)-(8) into eq. (1):
bg™® + (3ak — 6k2b)g" — (bk* — w—ak®)g + Fg® +
+i[(v+3ak?® — 4bk®)g’ + (bk —a)g"] =0 (9)

where
a=bk, v=4bk®-3ak?

We get an ODE:
bg™ +H,g +H,9"+Fg® =0 (10)
where H, =ak®+w—bk*, H, =3ak —6kb

The exp-function method was first proposed by Chinese mathematician, He and Wu
[23]. We consider the following general PDE to show the solution process [23-28]:
P(U,ug, Uy, Uy, Uy, Uy Uy ) =0 (112)
By the transformation:
E=kx+awt+ly (12)

where k, w and | are unknown constants. Equation (12) is converted into the following non-li-
near ordinary differential equation:

G(u,u’,u"u",..)=0 (13)

According to the exp-function method, we assume the solution can be expressed in
the following form:

d
> a,exp(né)

uE@ ="t (14)
> b, exp(me)

m=—p
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where ¢, d, p, and g are positive integers that could be freely chosen. By substituting eq. (14)
into eq. (13), collecting terms of the same term of exp(i&), and equating the coefficient of each
power of exp(i&) to zero, we can get a set of algebraic equations for determining unknown
constants.

For the present problem, we assume that its solution has the form:

() = a, exp(n) + ay +a_; exp(-7) (15)
exp(17) + by +b_; exp(-7)

where a1, ag, a1, bo, and b_; are constants. Substituting eg. (15) into eq. (10), setting the coef-
ficients of exp(in), (i =0,£1,+2,£3) to zero, we obtain the following algebraic equations:

7lab + ajw — &, (3ak — 6k?b) + Fa,® + ab? =0 (16)
71ba_;b” + wa ;b — (3ak — 6k*b)a_;b*, + Falh? +b?a ;b? +ba ;b* (3ak — 6k%b) = 0(17)

73bb? 8, + wb® 8, + (3ak — 6k?b)b* 8, + 2Fa by + 67ba_jbyh? +4wa_jbyb? — 18)
—5(3ak — 6k?b)a_jbyb?, +3Fa’ b ;a, +4b%a_jbyb? + 4(3ak — 6k*b)ba_,byb? =0
73ba, + wa, + ay(3ak — 6k?b) + 2Fa, b, + 3Fa’la, + 4a,b’b, + 67a,bb, + 4a,b,w — 19)
—5(3ak — 6kb)ayhy, + 4(3ak — 6k *b)a,bb, =0
2Fa®b , +87abb* —20ba_,b% + wab?, + 4wab® +3(3ak — 6k?b)ab?;
—8(3ak — 6k?b)a_,b% + Fa’,bZ + ab’b* + 4b%a ;b3 —7a_;bZb? (3ak — 6kb) +
+b2a_;bb? +byb®a, (61b + 4w + 3ak — 6k *b) + a;bb®, (3ak — 6k b) +
+4ba_;b?, (3ak — 6k?b) + 3Fb? (a2 +a ,a2) +
+a_,bZb? (5b + 6 +18ak —36k2b) + 6FaZ by ja, =0 (20)
4wayh, + (3ak — 6k*b)(ayh, —8ab | +4bab | +6bab +3a , —7ab? +ba )+
+Fa,(3a,a , +3a% +a’b¢ +6a,b,a, + 2a’b ,) +87ba |, + wa | +5a,bh? +
+6wabg +ab®(4b_, +6by) — 20a,bb_, + 61bbyb | +4wab ; =0 (21)
ab?(by +b?) + F(alh? +3aa% +3a 485 +3a ;a2 +2bya3 +6afa b, +
+6agh_;aZ + 3ab?ag +3afa ;b +6a’byb_ja,) + (3ak — 6k?b)(5a_jbZ —10a,b% —hia, +
+a,bhy + 6a,bb?% + 6ba_jbZ —10a,b2b , +4ba ;b , —13b,b_,a, +12a,bbZb ;) +
+b%a_, (60 +4b_;) —180ba_;b ; + 4wa_b_; + 26bab? +5ba ;b —bbja, + wahy +

+ 6owayb?, +6ma_jb? + 4obla, — 70a,bhZh | +12wahZb | +12a,b%hlh | —
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F(a% +6a,a%b ; +6a%ab, + 6cb_ja2 + 2byb_ja5 + 3a,a% b + 3a’a_jb? +3ab%al +
+12a,a_;a5h5b ;) + (3ak — 6k?b)(5a,bZb% —10a_,b% +ba_,by +6ba ;b% —10a ;bib , —
—13agbyb?, — agbdb_; +12ba ;bib_; + 6a,bblb? ) + w(4ab® +a jby +6a b +
+12a_;bZb_, +12a,byb?, + 4agbdh ; + 6abZb? ) —180a,bb®; + 26ba_;b? + 4a,b?b® +
+b?a_,by +6b?%a_,b? + 6a,b’bZb? — 70ba_;bib_; + 25a,bbyb?% — bbb ;a, +
+4a,bb? +5abbib% =0 (23)

Solving the previous system, we get:

\/szkz —30k? —b% —w—T1b
a.l = F

(2aw’ — 2am)h,

%0 = T902kZ 1 9bk? + 302 + 30+ 2130 _3F (24)
aj=ab,, by=by, b,y=b,

The solution of eq. (10) is:

\/3b2k2 _3pk? - b? —w—T71b
F
. (2aw® — 2am)h,
u(x,t) = —=90°k? +9bk® +3b% + 3 + 213 - 3F
exp(x + bk3t) + by +b_; exp(—x — bk>t)

exp(x + bk3t) +

+a,b_, exp(—x —bk>t)

(25)

where by, b_1, and a; are free parameters, a_1= ab_s.

Conclusion

We obtain an exact solution for eq. (1) by the exp-function method, the explicit solu-
tion given in eq. (25) gives a clear solution property of the non-linear Schrodinger equation, it
includes the various solitary wave solutions, bob_1 and a; are free parameters. When:

1

\/3b2k2 —3pk? b2 —w—T1b _
b, = - =

a standard solitary wave solution is obtained.
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