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In this paper, the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov
equation is investigated to acquire the complexiton solutions by the Hirota direct
method. It is essential to transform the equation into Hirota bi-linear form and to
build N-compilexiton solutions by pairs of conjugate wave variables.
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Introduction

Non-linear differential equations (NLDE) represent humerous phenomena in many
fields of mathematics and physics [1-6]. Therefore, it has always attracted attentions of math-
ematicians and physicists to find exact solutions. The Hirota direct method is considered an
effective method to find multiple soliton solutions [7-11].

Complexiton solution was first introduced in [12] which means a combination of
exponential waves and trigonometric waves and corresponds to complex eigenvalues of asso-
ciated characteristic problems. Several methods for complexitons have been developed [13-
16], among which the Hirota direct method was proved a promising one [17-21].

In this paper, we investigate the (2+1)-D asymmetrical Nizhnik-Novikov-Veselov
(ANNV) equation:

U + Uy + 3(uJ‘uXdy)X =0 (1)

The ANNV equation describes an incompressible fluid, which was first proposed by
Boiti et al. [22]. Hu [23] obtained the variable separation solutions by Darboux transfor-
mations of the eq. (1). This equation has been extensively studied, for examples, Yong and Qi
[24] obtained a series of double periodic solutions through the rational elliptic function expan-
sion method, Dai and Zhou [25] constructed separation solutions by the extended tanh-
function method, Fan [26] derived the quasi-periodic wave solutions and established the rela-
tions between the quasi-periodic wave solutions and soliton solutions, and Zhao et al. [27] an-
alyzed the lump soliton, mixed lump stripe and periodic lump solutions.
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With the dependent variable transformation:
u=ug +2In(f), 2
in which uo is a constant solution of eq. (1). The Hirota bi-linear form of ANNV is given:
(DD, + D, D, +3u,Df) ff =0 (3)
where f is a real function of x, y and t, D3, D2, D, and D are Hirota bi-linear operators.
Fundamental methods

We consider the bi-linear equation:
H(D, D, ....D, )ff =0 (4)
where H is a polynomials with M variables, and it satisfies H(0) = 0 and H(—x) = H(x).
We introduce a complex wave variable defined:
M
& =80+ 2 CkX ®)
k=1

where ¢, eC,k=0,1, ..., M.

Supposing the expansion f =1+¢f; +&2f, +..., letting f =e%, substituting the
expansion and f; into eq. (4) and collecting all the coefficients about &, taking coefficient of ¢,
we have:

H(§1:§2’---’§M)f1:0 (6)

Consequently, if a complex function f =1+e% is a solution of eq. (4), they are cor-
responding to the same dispersion relation:

H(¢&ovenli) =0, H(G, &) =0 )

Through the Hirota method, we study N = 2,&; =g, +Z’Q":1§jkxk , J = 1,2, which
corresponds to the dispersion relation and the complex function:

f =1+e% +e% +,9126§1+§2, O, = H($o1 —SiaSom —Sim) ®)
H(o1 + 811 8om +61m)

If &, &, are reciprocal conjugation, eg. (8) becomes:
f =1+e% +e% +0,e% =1+e) cos[Im(&)] + 6,627 9)

When N >3, based on [17] the form of N-soliton solutions can be shown:
N
Zexp£2ﬂj§j +Z‘9jkﬂj§kj (10)
j=1 j<k

where pj=0o0rl to j=12,..,N, e = 0 which equals to:

0y = H(§k1_§j1a---a§kM _ng) 1<j<k<N (11)

B H(Ca+ < Gn +<im)
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Furthermore, H corresponds to the Hirota condition:

k<j

N N
ZH(Zngjll---vzajng JHH(O'kéVkl—Gj§j1:---10k§km —oi¢im)oxo; =0 (12)
j=1 j=1

where o; =+1, j,k=12,.,N. According to the Theorem, we can derive multi-complexi-
tons.

Theorem [11]. Let H be a real polynomials satisfying H(0)=0, H(-x)=H(x)
for xeRM, N be a positive integer. Assume that the complex wave variables
&=L+ Ikl kX J=13,..,2N -1, satisfying the dispersion relation and the Hirota
condition, and suppose &; = &4, j=12,.., N, then the function:

2N 2N
f=1+z Z exD{ZﬂjfjJrz%ﬂkﬂjJ (13)
=1

2N

nzl;/h:” j= k<j
pfgesents a complexiton solutions to eq. (4), where x;=0or 1, for j=12,..,2N, and
e =0y, J,k=12,.,2N, determined by eq. (11).

Multi-complexiton solutions to ANNV

In this part, we utilize 2N-soliton solutions to builds N-compilexiton solutions by pa-
irs of conjugate wave variables and Hirota direct method. One, two, and N-complexitons to
eg. (3) are respectively obtained in following procedures.

Consider 2N = 2, according to eq. (5), we take:

E'X Y, ) =kXx+1'y+m't+ & (14)
where k', I', m" and &. are parameters. Through pairs of conjugate wave variables, we suppose
that &'=&=§+1&,, &=&-16 (in which 1=+-1), that means & =Re(&'),
& =Im(S).

If f=1+¢ isa complexiton solution of eq. (3), if and only if the following disper-
sion relation is satisfied:
HK,I'm)=H(K,I'm)=0 (15)

Making ki = Re(k’), k2 = Im(k"), I. = Re(l'), I = Im(l"), m1 = Re(m’), and m = Im(m’),
we have & =kx+lit+m + &, & =KX+ Lt +m, +&.. Then, eq. (15) becomes the follow-
ing form:

k312 — k1,7 + 3kako % + 3Kyl, %k, — 3Kyl — 6Kyl,koUg + 3Kyl
- 2 +1,2

. k2l % + 1,2k, — 3k 2k, 1,2 — 3k 21,2k, + 3k, %LU — BkoKolug — 31,k,ug
, =

(16)

1,2 +1,°
Through 2-soliton formulation, we can derive the 1-complexiton solution of eq. (3)

f=1tes +e% +0,e5"% =1+ 2e%c0s(&,) + 6,6 (17)
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in which:
CHK -k =1m'=m)  H(2iky,2ily, 2im,)
HK + K+, m +m)  H(2k,2l,,2m,)

12 —

[(1,21, 41,20k, —ugl,? [k + 2ugkokohl, + (121, +1,2)k,° —ugk, 2l

2 K + Uk 2% + [ (1% + 11,2 )ko? — 2ugkohly Ky + Ugk,22 ()
The 1-complexiton solution of eq. (1) is expressed:
2{461,kqhe® — 2[(~kyly +Kyl,) c0s(&,) +in(&, )kl + koly)Je |
it 1+ 2e% cos(&,) + 0,824 .
.8[k1e§1 C0S(&,) — 6%k, Sin(&,) + 6,k e ][ e cos(&,) —el, sin(&,) + 6,he? | 19)

2
[1+2e% cos(&,) + 6,674 |

where Iy, Iz, kg, ko, &x, &5, tand ug are arbitrary constants.
Next, in order to obtain 2-complexiton solution, we consider 2N = 4, assume the fol-
lowing function:

E' Y ) =kXx+1'y+mt+ &, &£'(XY,1)=KX+1"y +m"t + & (20)
where k', k", I', I', m', m", &, and &« are constants.

Through pairs of conjugate wave variables, we take ¢&'=¢&=§& +1&,,
S=a-1&, &'=84=G+I1&, & =514, thatis to say & =Re(), & =Im(S),
& =Re(l"), & =Im(S").

k; =Re(k’), k,=Im(k’), k;=Re(k"), k,=Im(k")
L =Re(l), l,=Im(l"), l;=Re("), I,=Im(") (21)
m, =Re(m’), m, =Im(m’), m;=Re(m"), m, =Im(m")

we have:
§1=le+|lt+m1+§l*, é:Z :k2X+|2t+m2 +§2*, (22)
then the dispersion relation can be converted into:
_ kP — k1 + 3Kk, + 3Kyl Ky — 3k Uy — BkylokaUg + 3k, %l
% +1,°
% +1,2 23)
: 1.2 +1,2
m, = k2lo? + 1,2k, — 3kg2k, 132 — 3Ka21,%K, + 3kg2l,Uq — Bkgk,laug — 314k,

2 2
1= +1,



Wu, P.-X., et al.: Multi-Complexiton Solutions of the (2+1)-Dimensional Asymmetrical ...
THERMAL SCIENCE: Year 2021, Vol. 25, No. 3B, pp. 2043-2049 2047

Through 4-soliton formulation, we can derive the 2-complexiton solution of eq. (3)
f=1+ef +e% +e% 1% + glzeéf‘réz' + 6)13e§{+§3' + 914e§{+§4' n 923652'+§£ + 924e§z'+§4' +
103,057 1 0,565 E 0,65 4 g5 EE | g, 05 A L g eBETEE 2
=1+ 265¢08(&,) +26%C08(&, ) + 6,625 + By,% +
1 2Re[G 5 5G4 4 g efitEiEd)]

+ 2Re(9123e2§1+§3+i§4 + 9134e§1+2§3+i§z ) + 9123462§1+2§3 (24)
where
__H(k!_k/,l/_l!,ml_ml) 0 __H(k/_k”,ll_l”,m!_m”)
P OHK KA mem) T HEK KLV +17,m +m")
H k!_lzll I!_I_II /__I! H Izl_klll_!_lll _I_ n
R LIS (25)
Hk +k"1I"+1",m"+m") H{ +k"1"+1",m"+m")
H(E/_lzn,l_r_l_/r,rﬁ/_rﬁ”) H(k"—l?”,l”—l_",m"—rﬁ”)
24 =7 ————————=, Oy =- = = —
H"+k"I"+1",m"+m") HK"+k" 1"+ 1", m" +m")
and Oz = 612013023, G124 = 0126014024, Oza = 023024031, 0123 = 012013623,

01234 = 01201361402360240:4.

Substituting eg. (15) into eq. (2), we can obtain 2-complexiton solution to eq. (1).
Finally, we construct N-compilexiton solutions by 2N-soliton solutions:

E' YD) =kX+ly+mt+é&, ., ENX YD) =kNx+INy+mNt+ N (26)

where k', kKN, I, IN, m, mV, &, and &N are constants. Through the same processing procedure,
let:

& =k X+ ht+m + &, & =KX+ Lt +m, + &
............ 27
Sana = KonoaX+ Nt + Moy g + Soniper Son = Kon X+ Lot + My + Sy
then the dispersion relation can be converted into as following form:
m, = k312 — k212 + 3k, k212 + 3ky12kZ — 3k 2L,y — 6k lok,Ug + 3kZ1U,
12 +15
KINZ + 12k — 3k 7K, IZ — 3kZIZK, + 3kE1,Uq — BkK,lug —31,K5uq
2~ |2 2
P+l
..... (28)

My = (=K3 b5 1 = K311l + 3Kpi1K3 151 + 3Ky 1l51K5) = 3K3 111 4o
— 6Ky _1loKy U + 3K3i 1y 4Ug) / (151 +13))
My = (k31151 +15K3) —3K3) 1Ko 1311 = 3K 113Ky +3K3 l1Ug
— 6Kyy 1K1 L1 — 3l KZUo) / (1714 +13))
with 2<I<N.
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Based on a 2N-soliton formulation, we can derive the N-complexiton solution of eq.

@):
2N 2N 2N e g
f=leyed+> ) g, e (29)
i=1 k=21<j,, jp oo i <2N
Similarly, substituting eq. (19) into eq. (2), we can obtain N-complexiton solution to
eg. (1).
Conclusion

In this paper, we construct complexiton solutions of ANNV equation by applying
the Hirota direct method and the pairs of conjugate wave variables. The key is to utilize the
bi-linear ANNYV equation. Using pairs of conjugate wave variables in 2N-soliton solutions, we
obtain a series of multi-complexiton solutions. It's recommended that this method can be fur-
ther used to find multi-complexiton solutions of non-linear equations with fractal derivatives
[28-35].
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