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Ritz method is widely used in variational theory to search for an approximate solu-
tion. This paper suggests a Ritz-like method for integral equations with an empha-
sis of pantograph delay equations. The unknown parameters involved in the trial 
solution can be determined by balancing the fundamental terms. 
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Introduction 

The Ritz method or the Rayleigh-Ritz method is a famous analytical technology in 
the variational theory [1]. The application of the method requires establishment of a variational 
formulation for the discussed problem, which might be more complex than the solution process 
for a non-linear problem. The semi-inverse method [2-8] is a widely used to build up a needed 
variational principle, a trial solution with some unknown parameters is chosen and the un-
knowns can be identified by the stationary condition of the variational functional. In this paper 
we show that the idea can be extended to solving integral equations, and the unknowns in the 
trial solution can be approximately determined:
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where τ, σi, α, and β are the constants, f and g – the functions. 
Equations (1) can be solved by various methods, e. g., the Taylor series method [9-13], 

the variational iteration method [14-19] and the homotopy perturbation method [20-27]. 

Ritz-like method 

Similar to the Ritz method, we can assume that the solution has the form:
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where an (n = 0 ~ N) are unknown constants. 
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Submitting eq. (2), combining the like terms of xn, and setting the coefficients of  
xn (n = 0 ~ N – 2) to zero, we obtain algebraic equations for an (n = 0 ~ N) by taking into account 
the initial conditions y(0) = α, y′(0) = β. 

Alternatively, we can assume the solution has the form:
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where Am(x) (m = 0 ~ M) and Bn(x) (n = 0 ~ N) are basis functions. If we choose Am(x) = amxm 
and Bn(x) = bnxn, the trial solution has the form:
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Example 1

We consider the following multi-pantograph delay equation [28]:
25 1 1( ) ( ) 4 9 1, (0) 1, 0 1

6 2 3
y x y x y x y x x y x   ′ = − + + + − = < ≤   

   
(5)

We assume that the solution has the form:
2 3

0 1 2 3( ) + + +y x a a x a x a x= (6)
Submitting eq. (6) into eq. (5):

( )2 2 3 2 3
1 2 3 0 1 2 3 0 1 2 3

2 3 2
0 1 2 3

5 1 1 1+2 +3 + + + 4 + + +
6 2 4 8

1 1 19 + + + 1
3 9 27

a a x a x a a x a x a x a a x a x a x

a a x a x a x x

 = − + + 
 
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(7)

It is easy to obtain the following algebra equations:

1 0 0 0
5 4 +9 1
6

a a a a= − + − (8)

2 1 1 1
52 2 3
6

a a a a= − + + (9)

3 2 2 2
53 1
6

a a a a= − + + + (10)

3 3 3 3
5 1 13
6 2 3

a a a a= − + + (11)

Solving the aforementioned algebra system:
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2
1675=

72
a (14)

3
12157=
1296

a (15)

Therefore we obtain the approximate solution:

2 367 1675 12157( ) 1+ + +
6 72 1296

y x x x x= (16)

which happens to be the exact one. 

Example 2

Consider the following delay equation [28]:
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with the following initial conditions:
(0) 1, (0) 1y y′= = − (18)

We assume the solution has the form:
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By a similar solution process as that of Example 1, the unknown parameters in  
eq. (19) can be identified:
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which is the exact solution. 

Discussion and conclusion 

The present method can be easily extended to the case with fractal derivatives 
[29, 30]:
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By the two-scale transform [7]:
nX x= (22)

Equation (21) is converted:
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The solution process for eq. (23) is previously illustrated, so it is easy to solve fractal 
differential equations.

The non-linear equations with delay terms are difficult to be solved, this paper propos-
es a simple but effective method for such problems. The results strongly depend upon the initial 
solution, a suitable choice of the initial solution will always lead to a good result. 
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