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This paper considers a heat conduction problem of a common continuum-type 
stochastic mathematical model in an engineering field. The approximate solution 
is calculated with the Markov chain Monte-Carlo algorithm for the heat conduc-
tion problem. Three examples are given to illustrate the solution process of the 
method. 
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Introduction 

Complex thermal systems are usually disturbed by random factors and need to be 

modeled by random differential equations. Scholars have grown interests in numerical meth-

ods for stochastic differential equations. Milstein [1] used Taylor’s expansion to get a numeri-

cal solution of a stochastic differential equation. Higham [2] studied the mean-square stability 

of the Euler-Maruyama method. Higham et al. [3] proved the convergence of the Euler-Maru-

yama method under the condition of non-total Lipschitz. Hutzenthaler et al. [4] proposed an 

explicit numerical method for solving stochastic differential equation with non-global Lip-

schitz continuous coefficients and proved its strong convergence. Wang and Gan [5] suggest-

ed an explicit strongly convergent numerical scheme for stochastic differential equations with 

commutative noise.  

Various numerical methods have been developed to estimate the parameters of sto-

chastic differential equations, for example, the Gibbs algorithm proposed by German and Ger-

man [6], and the resampling algorithm given by Gordon et al. [7]. Eraker [8] used the Bayesi-

an method to discuss estimation of the parameter in model with a stochastic volatility compo-

nent. Golightly and Wilknson [9] discussed the parameter estimation of the nonlinear multi-

variate diffusion models based on the missing data. Miguez, et al. [10] discussed the sequen-

tial Monte-Carlo method in general state-space models.  

Many studies have been conducted in the field of heat conduction. The interdiscipli-

nary study has also developed rapidly and has penetrated to many disciplines. Various meth-

ods for solving the thermal conductivity of materials have been proposed, such as the spirit 

sensitivity method, the least squares method, the regularization method, and the conjugate 
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gradient method. Martin-Fernandez and Lanzarone used the Monte-Carlo method to solve the 

heat conduction problem [11]. Tifkitsis and Skordos [12] developed a modified scheme based 

on the Markov chain Monte-Carlo (MCMC) for the estimation of unknown stochastic input 

parameters, such as the heat transfer coefficient. Zeng et al. [13] extended the approximate 

Bayesian computation method to the inverse heat conduction problem and developed two heat 

conduction solvers.  

Recently, many researchers performed excellent studies in the field of the MCMC, 

and some new expended approaches have been widely used in various engineering fields. 

Rich information on different aspects of biological mechanisms is encoded by genes, and Ko 

et al. [14] proposed an MCMC method to extract new biological information from the data. 

Hemantha [15] introduced an MCMC simulation method to engineering economics research. 

Yousaf et al. [16] considered transmuted distribution and compared priors under the squared 

error loss function. Begona, et al. [17] developed a new technique to estimate the SIR model 

parameters using the MCMC method. 

Motivated by the previous ideas, our scheme utilizes MCMC to solve a class of heat 

conduction problems. 

Differential equation of heat conduction is listed: 

 x y z v p

T T T T
k k k q c

x x y y z z t


           
+ + + =              

 (1) 

where T  is the transient temperature, t  – the time of the process, , ,x y zk k k  are thermal coef-

ficients,   – the density of materials, pc  – the specific heat capacity at constant pressure, and

vq  – the internal heat source strength. 

We define the difference operators as:  

 
2 2 2

2

2 2 2x y z

  
 = + +

  
 (2) 

Assumption 1: When the material of an object is isotropic, it implies that:  

 x y zk k k k= = =  (3) 

Assumption 2: As there is no heat source in the object, the implication is that: 

 0vq

k
=  (4)  

Assumption 3: Let 1( ) ,T pk c  −=  the object is in the steady-state temperature field 

and it implies that:  

 
1

0
T

T

t


=


 (5) 

Based on eqs. (2) and (3), eq. (1) can be transformed:  

 2 1v

T

q T
T

k t


 + =


 (6) 

Based on eq. (4), eq. (6) can be transformed:  

 2 1

T

T
T

t


 =


 (7) 
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Based on eq. (5), eq. (6) can be transformed:  

  2 0vq
T

k
 + =  (8) 

with an initial condition ( ,0) ( ),T x x=  and some boundary conditions (0, ) ( )T t t=  and 

0( , ) ( ),T x t t=  where 0( ), ( ),t t x   are known.  

Let an object of length, d, be initialized at the uniform temperature x1 [°C]. Suppose 

at x= 0 is heated to x2 [°C] and at x = d is heated to x3 [°C]. This problem can be modeled by 

eq. (1): 
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(9) 

Bayesian inference for solving a classical  

stochastic diffusion problem  

Given a diffusion of physical Langevin equation: 

  d ( , )d ( , )dt t t tY b Y t Y W  = +  (10) 

The tY  is the solution of eq. (10). The transition density: 

  0

d
( | ) ( | )

d
t tp y x P Y y Y x

y
=  =   

further  
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can be obtained by Fokker-Planck equation. The time interval [0, T] is subdivided equidistant 

points: 

 0 1 10 ,N N

T
t t t t T t

N
−=     =  =  

In practice, it is necessary to give the Euler approximation: 

  
1

( , ) ( , )
i i i it t t t tY Y b Y t Y W  
+
− =  +   (11) 

where 
it

Y  is the observed at time it and 1 ~ (0, ).t t tW W W N t+ = −   

From eq. (11), the transition probabilities of 
1i it tY Y
+

→  from time it  to 1it + are: 

 
1
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i i i i it t t t t tp Y Y N Y b Y t Y W   
+

 +    

the posterior distribution of  is given by: 
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1
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p i i
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Y Y Y p Y Y  
−

=
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where π( ) is a prior distribution of . 
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Markov chain Monte-Carlo for solving a classical  

of heat conduction problem 

Many heat conduction problems of complex boundary are unable to solve with ana-

lytical methods. Instead, related numerical methods have developed rapidly [18-25]. Let’s 

consider: 

  

2 2

2 2
0, 0 , 0
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T A y A y
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 
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 

= − = −

= −
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 (12) 

The domain [0, ] [0, ]A B  is divided into an M N  mesh with the step size 
1h AM −=  in the X-direction and the step size 

1BN −=  in the Y-direction. By Taylor's ex-

pansion:  
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we have: 
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Similarly: 

  
2

, 1 , , 1

,2 2

2
( )

( )

i j i j i j

i j

T T TT
o y

y y

+ −− +
= + 

 
 

 

(14) 

 

Let us consider eq. (12) at point (i, j): 
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Equation (15) can be transformed:  
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Consider a Markov chain: 

 , 1, 2, , , 1 , 2;  i j i j i j i j i j i jT T T T T T+ + + +→ → → → → →
 

Let 0,( ) ,j jp T p=  and we get and transition matrix ( ).ijP p=  

Based on eqs. (13)-(16), a MCMC algorithm is implemented to estimate transition 

probability. 

Numerical results 

In this section, numerical tests for the proposed methods are demonstrated. 

Example 1. Consider the problem [23]: 

  
2 2

2 2
0, 0 , 0

T T
x A y B

x y

 
+ =    

 
  

with boundary conditions T(0, y) = ey – cosy, T(A, y) = ey – cosA – eAcosy, T(x, 0) = cosx –ex, 

and T(x, B) = eBcosx – excosB. Results obtained for ( , )T x y  are presented under 4, 5A B= =

in tab. 1. 

Table 1. Results with A = 4, B = 5 for Example 1 

Example 2. Consider the problem [23]: 

  
2

2
, [0,1]

T T
a x

t x

 
= 

 
  

with an initial condition T(x, 0) = sinπx, and two boundary conditions (0, ) (1, ) 0 C.T t T t= =  

When a  is set to 1, the exact solution of the previous equation is 2( , ) exp( π )sin π .T x t t x= −

The obtained results are presented in tabs. 2 and 3 and fig. 1. 

Table 2. Numerical results and exact solution with  t = 0.0005, N = 50 for Example 2 

Point 
(x, y) 

Average number  
of iterations 

Numerical result  
of T(x, y) 

Standard  
deviation 

Confidence interval  
at  = 0.05 

(0.5, 0.5) 7.476 –0.0678 0.1880 (–0.3012, 0.1656) 

(0.5, 1.0) 8.490 1.7058 0.1572 (1.1572, 1.9010) 

(1.0, 0.5) 8.618 –1.4581 0.2049 (–1.7125, –1.2037) 

(1.0, 1.0) 8.240 0.0129 0.2123 (–0.2506, 0.2765) 

(1.5, 1.5) 8.507 –0.0545 0.2176 (–0.3246, 0.2165) 

Point (x) Exact solution Numerical solution Numerical result at [20] 

0.1 0.3105 0.3085 0.2930 

0.2 0.5907 0.5868 0.5621 

0.3 0.8130 0.8079 0.7799 

0.4 0.9558 0.9595 0.9280 

0.5 1.0049 0.9986 0.9931 
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Table 3. Numerical results and exact solution with t = 0.0005, N = 100 for Example 2 

 

Figure 1. Numerical results and exact solution T(x, y) with t = 0.0005 for Example 2;  
(a) N = 50 and (b) N = 100

Example 3. Consider the problem [26]: 

  1 2 3 0d ( )d d , 10t t t tY Y t Y W Y  = + + =   

here 3 1 = is known. The explicit estimators for 1 2,  are presented in [23]: 
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 

   

  

Some results for comparison are shown in tab. 4. 

Point (x) Value of accurate Numerical result Numerical result [20] 

0.1 0.3105 0.3086 0.2941 

0.2 0.5907 0.5870 0.5627 

0.3 0.8130 0.8078 0.7798 

0.4 0.9558 0.9496 0.9278 

0.5 1.0049 0.9985 0.9930 
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Table 4. Results with (1, 2) obtained for estimators 

Conclusion 

This paper proposed different methods based on the Bayesian approach to solve a 

heat conduction problem. The differential equation of the heat conduction is discretized by 

Taylor's expansion method [27, 28], and MCMC method is applied to estimate the transition 

probability. Three listed numerical examples validated the suitability and efficiency of the 

proposed numerical method in solving the heat conduction problem. 
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