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In this paper, the parameter estimation is discussed by using the maximum likeli-
hood method when the available data have the form of progressively censored 
sample from a constant-stress accelerated competing failure model. Normal ap-
proximation and bootstrap confidence intervals for the unknown parameters are 
obtained and compared numerically. The simulation results show that bootstrap 
confidence intervals perform better than normal approximation. A thermal stress 
example is discussed. 
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Introduction 

As the statistical analysis of engineering, econometric and other fields, the compet-

ing failure model plays an important role. In fact, many conditions can lead to the failure of 

a life test, which may be caused by one of several factors. Usually failure time is defined to 

be the earliest occurrence among all these risks, so there is much literature for the compet-

ing failure model. Several scholars have given statistical inference based on the competing 

failure model [1-4]. Because many competing failure products with high reliability can work 

for a long time, so various accelerated life tests (ALT) are widely used to study the product 

lifetimes with long-life in order to reduce the testing time and cost in the experiment. In 

ALT, the units are run at higher-than-use stresses, such as thermal, voltage and mechanical 

stress and so on. In this paper, an accelerated thermal ageing technique is used with the ap-

plication of the Arrhenius model. Under the accelerated competing failure model, Wu et al. 
[5] made inference in Weibull distribution. Constant-stress testing is a widely used in ALT 

[6-8]. Moreover, in order to save time and reduce cost in ALT, censoring is considered in 

reliability experiments. The main advantage of censoring is to speed up the experiment and 

get the effective number of failures. The Type-I, Type-II, progressively Type-I and progres-

sively Type-II censoring are the most common censoring schemes (CS) which are applied in 

ALT [9-13]. The two-parameter inverse Weibull (IW) distribution with upside-down bath-

tub shaped failure rate is popular as the lifetime distribution in a life-testing when the data 

indicate non-monotone or unimodal hazard functions. Extensive work has been done on the 

IW distribution [14-16]. 

–––––––––––––– 
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In this paper, we discuss a constant-stress accelerated competing failure model under 

progressively Type-II censoring when the lifetime distribution of the different risk factors is 

independently IW.  

Model description and basic assumption  

Model description  

For constant-stress accelerated life test (CS-ALT) with the normal stress level 0S  

and k  accelerated stress levels 1 2 1 2, , , ( ), k kS S S S S S    n  test units are randomly di-

vided into k  groups, and the size of the ith group is ni ( 1,2, , ).i k  Suppose that there are 

two independent causes of failure, and each unit failure is caused only by one of two failure 

factors. Under stress, Si, the progressively Type-II censoring life test can be described. The 

first failure takes place, Ri1 units are progressively removed from the remaining survived 

units, we get the sample 1 1 1( , , ).i i it R  Similarly, following the second failure takes place,
 2iR  

of the remaining units are progressively removed from the remaining survived units and so 

on. When the mi
th ( )i im n failure 

iimt occurs, all the remaining units Rim are removed and the 

test terminates. Here 1 2 1 2, , , , ( )
i ii i i im i i i im im R R R m R R R n      are prefixed constants. 

The final observation sample is 1 1 1 2 2 2( , , ),( , , ), ,( , , ),
i i ii i i i i i im im imt R t R t R   1,2, , ,i k

where 1 2, , ,
ii i imt t t are order statistics, {1,2 .}

iim   Let: 
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that is the indicator function. 

Basic assumption  

– There is just a cause leading to the failure in the life testing. The failure time of the unit is 

1 2min{ , }.T T T
 
 

– The lifetime follows the IW distribution IW( , )j ij  with shape parameter, αi, and scale 

parameter, :ij  
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with 0, 0, 0.j ijt      

– The failure causes are the same under different stress levels. So they have the same shape 

parameters 1 2 ( 1,2).j j kj j j        

– The scale parameter, ,ij  agrees with a log-linear function of stress: 

 ln ( ) ( 1,2, , ; 1,2)ij j j ia b s i k j      (3) 

where aj and bj are unknown coefficient parameters, ( )is is a given decreasing function of 

stress level si. In particular, when the stress is temperature, it offers the Arrhenius model that 

is ( ) 1/ ,i is s   and when voltage is the stress, it turn to be the inverse power law model with 
( ) ln .i is s   

 



Wang, Y
 

Maximum likelihood estimates  

Likelihood function 

Based on progressively Type-II censored competing failure data 1 1 1( , , ),i i it R  

2 2 2( , , ), ,( , , ),
i i ii i i im im imt R t R   1,2, , ,i k  the likelihood function can be obtained. 
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By substituting eqs. (1) and (2) into eq. (4a): 
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where C is constant, 1 ( )im
ij j illn I    denotes the failure numbers of the jth cause under stress 

level Si: 
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Point estimation  

Let 1 2( , , , , ) ( 1,2),j j j j kj j       the log-likelihood function can be written 

based on eq. (5): 
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Taking the first partial derivative of eq. (7) with respect to j , ij  and equating them 

to zeros: 
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with 1,2, , , 1,2.i k j   

It is obviously seen that it is hard to get the closed from solutions, we can obtain the 

maximum likelihood estimates of the parameters j and ij  ( 1,2, , , 1,2i k j  ) form eqs. 

(8) and (9) by the Newton-Raphson iteration. 

Asymptotic confidence intervals  

According to the asymptotic likelihood theory, we get the information matrix of 

,j  the elements of which are negative second derivatives of jl : 

 

22

2 2 2
1

[1 ( ) ]exp( )

[1 exp( )]

j j
i

j

m
j ij j il il ij il il

ii

iij ij ij il

l n I R t t
I

t

 



 

  

 




   
   

  
  (10) 

 

2

( 1)

1

( ) ln –
i

j

m
j

i k il j il il
ij j l

l
I t I t




 








   

 
   

 
2

1

[1 ( ) ] ln exp( )[exp( ) 1 ]

[1 exp( )]

j j j j
i

j

m
j il il il il ij il ij il ij il

l ij il

I R t t t t t

t

   



   



   




     


 
  (11) 

 

2

2
( 1)( 1) 2 2

1 1 1

1
( )(ln )

i

j

mk k
j

k k ij ij j il ilil
i i lj j

l
I n t I t


 

 



 

  


    


   

 

2

2
1 1

[1 ( ) ] (ln ) exp( )[exp( ) 1 ]

[1 exp( )]

j j j j
i

j

mk
j il il ij il ij ij ijil il il il

i l ij il

I R t t t t t

t

   



    



   


 

     



  (12) 

  

 0 1,2, , ; 1, 2, ,ij jiI I i k j i i k        (13) 

   ( 1) ( 1)  1,2, ,i k k iI I i k     (14) 

In fact, the explicit expressions for the information matrix cannot be given in the 

closed form. Then, the observed Fisher information matrices: 
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and the approximate asymptotic variance-covariance matrix can be given by 1ˆ( ) .jI   

Therefore, the approximate 100(1 )%r confidence intervals for the parameters ,j  

( 1,2, , , 1,2)ij i k j    are, respectively, expressed: 

 2 2
ˆ ˆˆ ˆ,ij ii ij iiZ V Z V    

  
  (15) 
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 2 ( 1)( 1) 2 ( 1)( 1)
ˆ ˆˆ ˆ,j k k j k kZ V Z V     

  
  

  (16) 

where 2Z is the percentile of the standard normal distribution with right probability. 

Bootstrap confidence intervals 

Compared to the traditional method, the bootstrap method is known to reduce com-

putation. Relying on the observation information other than any subjective assumption, the 

bootstrap method can expand sample size by simulation so as to compensate the shortage of 

data. Bootstrap samples are generated. 

– Based on the original data obtain the maximum likelihood estimates of ,j  

( 1,2, , ),ij i k 
 
denoted by 1 2

ˆ ˆ ˆˆ ˆ( , , , , ) ( 1,2).j j j j kj j       

– Based on ˆ  ( 1,2)j j   generate a new bootstrap sample, and calculate the new maximum 

likelihood estimates for parameters, denoted by:  

          1 1 1 1 1
1 2
ˆ ˆ ˆˆ ˆ , , , ,   ( 1,2)j j j j kj j      

 
 

– Repeat step 2( 1)N   times, we can generate N  different bootstrap samples for ˆ .j  

– With the previously acquired bootstrap samples, we now obtain the two sided 100

(1 )%r Bootstrap confidence intervals for parameters as follows: 

 2 2
ˆ ˆˆ ˆ( ), ( )ij ij ij ijZ Var Z Var      

  
  (17) 
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Simulation and data analysis 

In this subsection, a Monte-Carlo are provide to investigate the proposed methods. 

Using the algorithm of Balakrishnan and Sandhu [17] and life-stress model [18], the progres-

sively Type-II censored samples are generated under different choice of parameters 

 , 1,2, 1,2 .j ij i j     Consider a two-level constant-stress ALT with two competing failure 

cause under progressively Type-II censoring. By eq. (2), we give 1000,N   1 200 ,S K

2 250 ,S K  1 1.6,a   1 600,b  2 1.5,a    2 1000,b   so 1ln 1.6 600i iS    for failure 

Cause 1 and 2ln 1.5 1000i iS   
 
for failure Cause 2. We also obtain the initial value for 

the scale parameters 11 99.5,   12 33.1,  21 54.6,   and 22 12.2.   The initial value for 

the shape parameters are 1 1.2 
 
and 2 0.8.   Moreover the initial sample size n was cho-

sen to be 40, 60, 80. We considered units randomly removed from the experiment with proba-

bilities p = 0.4, 0.5, and 0.6, at each failure in tab. 1.
 
 

Furthermore, based on tab. 1, a parametric percentile asymptotic confidence intervals 

and bootstrap confidence intervals are proposed for parameters , ( 1,2, 1,2).j ij i j     We 

considered units randomly removed from the experiment with probability 0.5p   in tab. 2. 
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Table 1. The estimates of the parameters in different schemes 

In tab. 1, we can find that the maximum likelihood estimation of parameters are 

closer to the truth values with the increase of sample size. But when the p = 0.5 increases to 

the p = 0.6, the estimation accuracy decreases. From tab. 2 shows, we can clearly see that the 

confidence lengths of bootstrap confidence intervals are smaller than that of the asymptotic 

confidence intervals for all cases. The Bootstrap method is superior to the maximum likeli-

hood estimation in the average confidence lengths of the 95% interval for parameters. 

Table 2. The estimates of the parameters and 95% intervals of the parameters 

Illustrative example 

In this section, areal data is discussed. The data set about insulated system of elec-

tromotor form Nelson [19]. The original data consists of three failure modes: the Turu, Phase, 

and Ground. For the proposed method, the paper use the data from 220 °C and 240 °C with 

n p1 n1 n2 1 2 11 12 21 22 

40 0.4 24 16 0.691 0.350 39.582 11.816 100.947 4.835 

60 0.4 36 24 0.759 0.464 56.656 14.473 95.832 6.154 

80 0.4 48 32 0.890 0.487 68.124 17.881 74.457 6.814 

40 0.5 24 16 0.813 0.551 45.116 18.112 77.062 6.297 

60 0.5 36 24 0.925 0.682 63.170 18.990 68.430 7.302 

80 0.5 48 32 1.094 0.711 72.010 21.846 60.074 8.905 

40 0.6 24 16 0.796 0.459 45.074 15.753 82.756 5.309 

60 0.6 36 24 0.844 0.535 57.216 17.601 79.022 6.712 

80 0.6 48 32 0.912 0.634 67.517 19.057 69.467 7.801 

Parameter Estimates n = 40 n = 60 n = 80 

1 
ACI [0.499, 1.236] [0.579, 1.428] [0.641, 1.336] 

BCI [0.574, 1.174] [0.633, 1.130] [0.866, 1.369] 

2 
ACI [0.235, 1.958] [0.553, 1.724] [0.512, 1.612] 

BCI [0.338, 1.219] [0.626, 1.701] [0.645, 1.359] 

11 
ACI [0,93.219] [14.703, 128.562] [35.882, 106.376] 

BCI [35.286, 85.932] [27.962, 118.025] [43.205, 90.358] 

12 
ACI [5.355, 58.928] [9.134, 43.014] [10.412, 40.627] 

BCI [7.690, 43.615] [9.720, 37.592] [13.088, 34.988] 

21 
ACI [22.345, 156.365] [30.200, 112.289] [39.056, 107.025] 

BCI [53.707, 123.970] [43.834, 107.718] [40.036, 92.532] 

22 
ACI [0.800, 17.087] [2.064, 15.540] [3.329, 13.544] 

BCI [1.780, 14.311] [2.105, 13.492] [4.036, 11.695] 
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the Turu and Ground failure causes are presented in tab. 3. Using the aforementioned ap-

proach, we get the parameters as 1 11.6,a   1 9.8,b   2 1.5,a    2 2.4.b    

Table 3. Insulated system failure time data with its cause of failure 

Conclusion 

In this paper, we discuss a constant-stress accelerated competing failure model. The 

maximum likelihood estimates of unknown parameters are given by establishing the likeli-

hood equations. The confidence intervals of the parameters are established by the approximate 

method and the Bootstrap method. The simulation results show that the maximum likelihood 

estimation of parameters are closer to the truth values with the increase of sample size, and 

p = 0.5 is the best randomly removed probability. The Bootstrap method is superior to the 

maximum likelihood estimation in the average confidence lengths of the 95% interval for pa-

rameters, mainly because of the approximate interval of the maximum likelihood estimation is 

based on the approximate variance covariance matrix, and the approximation is good when 

the sample size is large enough. A real thermal stress data set was presented to illustrate the 

application proposed method in practice. 

Acknowledgment 

This work was supported by National Natural Science Foundation of China (Grant 

No. 11861049), Natural Science Foundation of Inner Mongolia (Grant No. 2017MS0101, 

2018MS01027). 

Reference 

[1] Wang, L., et al., Inference for Weibull Competing Risks Model with Partially Observed Failure Causes 
under Generalized Progressive Hybrid Censoring, Journal of Computational and Applied Mathematics, 
368 (2020), Apr., pp. 423-431 

[2] Yang, L., et al., Hybrid Preventive Maintenance of Competing Failures under Random Environment, Re-
liability Engineering and System Safety, 174 (2018), June., pp. 130-140 

[3] Han, D., Balakrishnan, N., Inference for a Simple Step-Stress Model with Competing Risks for Failure 
from the Exponential Distribution under Time Constraint, Computational Statistics and Data Analysis, 
54 (2010), 9, pp. 2066-2081 

[4] Pareek, B., et al., On Progressively Censored Competing Risks Data for Weibull Distributions, Compu-
tational Statistics and Data Analysis, 53 (2009), 12, pp. 4083-4094 

[5] Wu, M., et al., Inference for Accelerated Competing Failure Model from Weibull Distribution under 
Type-I Progressively Hybrid Censoring, Journal of Computational and Applied Mathematics, 263 
(2014), June, pp. 423-431 

[6] EI-Raheem, A. M. A., Optimal Plans and Estimation of Constant-Stress Accelerated Life Tests for the 
Extension of the Exponential Distribution under Type-I Censoring, Journal of Testing and Evaluation , 
47 (2018), 5, pp. 3781-3821  

[7] Nassar, M., Dey S., Different Estimation Methods for Exponentiated Rayleigh Distribution under Con-
stant-Stress Accelerated Life Test, Quality and Reliability Engineering International, 34 (2018), 8, pp. 
1633-1645 

[8] Han, D., Time and Cost Constrained Optimal Designs of Constant-Stress and Step-Stress Accelerated 
Life Tests, Reliability Engineering and System Safety, 140 (2015), Aug., pp. 1-14 

Temperature Failure times and failure causes (1 = Turu; 2 = Ground) 

220 °C 1764(1), 2436(1), 2436(2), 2436(1), 2436(2), 2436(1), 3180(1), 3180(1), 3180(1), 3180(1) 

240 °C 1175(2), 1175(2), 1521(1), 1569(1), 1617(1), 1665(1), 1665(1), 1713(1), 1761(1), 1953(1) 



Wang, Y
 

[9] Kohansal, A., On Estimation of Reliability in a Multi-component Stress-Strength Model for a Kumaras-
wamy Distribution based on Progressively Censored Sample, Statistical Papers, 60 (2019), 6, pp. 2185-
2224 

[10] Zhang Z., Gui, W. H., Statistical Inference of Reliability of Generalized Raleigh Distribution under Pro-
gressively Type-II Censoring, Journal of Computational and Applied Mathematics, 361 (2019), Dec., 
pp. 295-312 

[11] Han, D., Kundu, D., Inference for a Step-Stress Model with Competing Risks for Failure from the Gen-
eralized Exponential Distribution under Type-I Censoring, IEEE Transactions on Reliability, 64 (2015), 
1, pp. 31-43 

[12] Zheng, G. Y., Shi, Y. M., Statistical Analysis in Constant-Stress Accelerated Life Tests for Generalized 
Exponential Distribution based on Adaptive Type-II Progressive Hybrid Censored Data, Chinese Jour-
nal of Applied Probability and Statistics, 29 (2013), 4, pp. 363-380 

[13] Ismail, A. A., Bayesian Estimation under Constant-Stress Partially Accelerated Life Test for Pareto Dis-
tribution with Type-I Censoring, Strength of Materials, 47 (2015), 4, pp. 633-641 

[14] Singh, S., Tripathi, Y. M., Estimating the Parameters of an Inverse Weibull Distribution under Progres-
sive Type-I Interval Censoring, Statistical Papers, 59 (2018), 1, pp. 21-56 

[15] Nassar, M., Abo-Kasem, O. E., Estimation of the Inverse Weibull Parameters under Adaptive type-II 
Progressive Hybrid Censoring Scheme, Journal of Computational and Applied Mathematics, 315 (2017), 
May, pp. 228-239 

[16] Akgul, F. G., et al., An Alternative Distribution to Weibull for Modeling the Wind Speed Da-
ta:InverseWeibull Distribution, Energy Conversion and Management, 114 (2016), Apr., pp. 234-240 

[17] Balakrishnan, N., Sandu, R. A., A Simple Simulation Algorithm for Generating Progressive Type-II 
Censored Samples, The American Statistician, 49 (1995), 2, pp. 229-230 

[18] Balakrishnan, N., Aggarwala, A., Progressive Censoring: Theory, Methods, and Applications, Birkhau-
ser, Boston, Mass., USA, 2000 

[19] Nelson W., Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, Wiley, New York, 
USA, 1990 

 

 

 

 

Paper submitted: December 26, 2019 © 2021 Society of Thermal Engineers of Serbia.  
Paper revised: May 10, 2020 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. 
Paper accepted: May 10, 2020 This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.  

http://www.vin.bg.ac.rs/index.php/en/

