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The dynamic characteristics of the 3:1 super-harmonic resonance response of the 
Duffing oscillator with the fractional derivative are studied. Firstly, the approxi-
mate solution of the amplitude-frequency response of the system is obtained by 
using the periodic characteristic of the response. Secondly, a set of critical pa-
rameters for the qualitative change of amplitude-frequency response of the sys-
tem is derived according to the singularity theory and the two types of the re-
sponses are obtained. Finally, the components of the 1X and 3X frequencies of 
the system’s time history are extracted by the spectrum analysis, and then the 
correctness of the theoretical analysis is verified by comparing them with the ap-
proximate solution. It is found that the amplitude-frequency responses of the sys-
tem can be changed essentially by changing the order and coefficient of the frac-
tional derivative. The method used in this paper can be used to design a fraction-
al order controller for adjusting the amplitude-frequency response of the frac-
tional dynamical system. 
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Introduction 

Fractional calculus is a generalization of the integer order calculus, it extends the or-
der of calculus from the traditional integer order to the case of fractional and complex orders, 
and has a history of more than 300 years. Compared with the traditional integer order calcu-
lus, the fractional calculus has more advantages in modelling complex phenomena. Fractional 
calculus has attracted wide attention of researchers in different fields and it has become the 
powerful mathematical tool to studying anomalous diffusion, non-Newton fluid mechanics, 
viscoelastic mechanics, soft matter physics, and so on. Because the fractional derivative can 
describe various reaction processes more accurately, many problems can be described better 
by fractional differential equations, so the studies of the typical mechanical characteristics of 
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fractional differential equations and the influence of fractional order parameters on the system 
are very necessary and have important significances.  

At present, most of the research on dynamic system is mainly focused on the analysis 
of vibration characteristics. Goddard et al. [1] discussed a quadrature method for generating bi-
furcation curves of positive solutions to some autonomous boundary value problems with non-
linear boundary condition to some autonomous boundary value problems with non-linear 
boundary conditions, provided an algorithm for the numerical generation of bifurcation curves 
and showed its application to selected problems. Cao and Yuan [2] considered a class of neutral 
functional differential equations (NFDE), described the bifurcation behaviour of the parameter-
ized NFDE by employing the method based on centre manifold reduction and normal form the-
ory. Liebscher [3] investigated the breakdown of normal hyperbolicity of a manifold of equilib-
ria of a flow, provided a description of general systems with a manifold of equilibria of codi-
mension one as a first step towards a classification of bifurcations without parameters by relat-
ing the problem to singularity theory of maps. Yu et al. [4] investigated the fractional Langevin 
equation driven by multiplicative colored noise and modulated noise in the over-damped case. 
The numerical results indicated that the output amplitude presents stochastic resonance driven 
by periodically modulated noise. Sardar et al. [5] studied the analytical approximate solution of 
the fractionally damped van der Pol equation by the homotopy perturbation method and a nu-
merical method. Li et al. [6] analysed the simplified Mathieu equation with fractional derivative 
term, which is derived by a viscoelastic simply supported beam under axial periodic excitation, 
and studied the effect of the system’s parameters on the stability of solution. Chen and Zhu [7] 
studied the asymptotic stability of a Duffing oscillator with lightly fractional derivative damping 
under parametric excitations in the case of primary parametric resonance, and the asymptotic 
Lyapunov stability with probability one of the original system is determined approximately by 
using the largest Lyapunov exponent. Zhang et al. [8] analysed the response of a Duffing-
Rayleigh system with fractional derivative under Gaussian white noise excitation by a stochastic 
averaging procedure which is developed by using the generalized harmonic functions. Yu and 
Wang [9] studied a linear HP TiO2 Memristor model under the fractional order derivative and 
showed that the material characteristic determines the order of the fractional derivative, and the 
best memory of the Memristor can be achieved by seeking to the material that can be adapted to 
the frequency of excitation. Wang and Hu [10] studied the linear oscillator of the single DoF 
with fractional derivative damping, and found that the fractional derivative not only plays the 
role of damping force but also acts as an elastic force. Shen et al. [11-13] studied the resonance 
behaviour of Duffing oscillator with fractional order derivative and obtained the first-order ap-
proximate solution by using the averaging method, and analysed the influences of the orders 
and coefficients on the equivalent linear damping and stiffness. Niu et al. [14] studied the free 
vibration of Duffing oscillator with time-delayed fractional order PID controller based on dis-
placement feedback and obtained the second-order approximate analytical solution by KBM as-
ymptotic method. Chen et al. [15, 16] and Yang et al. [17] equated the fractional derivative term 
as the linear restoring force and damping force based on the harmonic balance method in order 
to transform the fractional oscillator systems into the integer order systems, and studied the 
properties of the related dynamic systems under Gaussian white noise excitation. Yang and Zhu 
[18] used the harmonic balance method to study the responses of a class of linear systems with 
fractional order derivative damping under different period signal excitations, and extended the 
range of the order of fractional derivative damping. Guo and Leung [19] proposed an improved 
harmonic balance method, and obtained the approximately analytical solution of the fractional 
van der Pol oscillator. Deng et al. [20] studied the mechanical properties of a class of thermo 
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elastic fluid materials by using the law of thermodynamics and the law of conservation of ener-
gy, and established a corresponding mathematical model. 

The methods of approximate analysis of fractional system mainly include the averag-
ing method and the harmonic balance method and so on. Although the amplitude-frequency re-
sponse equation of the system can be obtained by these methods, however, the singularity anal-
ysis of the amplitude-frequency response equation is difficult due to its complexity. Additional-
ly, the study on the vibration characteristics of the parameters can only be qualitatively ana-
lysed, and the critical conditions of the parameters’ influences cannot be found, which affects 
the analysis and design of such systems. In view of the aforementioned situation, the non-linear 
vibration of the typical Duffing equation is considered as an example, the transition set of the 
fractional order system are obtained numerically, thus the critical parameter conditions for the 
bifurcation of the system are obtained. Meanwhile, the types of amplitude-frequency response 
curves of the system in each region of the parameter plane divided by the transition set are ana-
lysed. By the method of spectrum analysis, the peak values at the corresponding frequencies are 
extracted from the spectrogram and are compared with the approximately analytical solutions 
obtained in this paper. Results show that the numerical solutions are in good agreement with the 
approximate solutions, thus the correctness of the theoretical analysis in this paper is verified. 

Amplitude-frequency response equation  

of the system 

There are many definitions of fractional derivatives, and the Riemann-Liouville de-
rivative and Caputo derivative are commonly used. However, the initial conditions corre-
sponding to the Riemann-Liouville derivative have no physical meanings, the initial condi-
tions of the systems described by the Caputo derivative have clear physical meanings and 
their forms are the same as the initial conditions for the differential equations of integer order. 
So in this paper, the Caputo-type fractional derivative is adopted: 

 
( )

1
1 ( )D [ ( )] d

( ) ( )

t m
C p
a p m

a

x u
x t u

m p t u + −
=
 − −

  (1) 

where 1 ,m p m−   ,m N [ , ],t a b Г(m) is the Euler Gamma function, and ( ) ( )mx t – the  
m order derivative of ( ).x t  

For a given physical system, due to the initial moment of the oscillator is t = 0, so 
the following form of the Caputo derivative is often used: 
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where 1 ,m p m−   .m N  
In this paper, the Duffing oscillator system with fractional derivative under periodic 

signal excitation:  

 3
1 1 0 1( ) ( ) ( ) D [ ( )] cos( )C pmx t kx t cx x t K x t F wt+ + + + =  (3) 

is studied, where m, k, c, and 1 represent the quality, the linear stiffness coefficient, the linear 
damping coefficient, and the cubic term’s coefficient of the system, respectively. The F1 and w 
are the amplitude and frequency of the periodic excitation, respectively. The 0 D [ ( )]C p x t is the  
p-order Caputo derivative of x(t), which is defined by eq. (2). The order of the fractional deriva-
tive is taken as 0 2p  in this paper, and K1 is the coefficient of the fractional derivative term. 
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Under the definition of Caputo derivative, according to the formulas in [12], the re-
sults can be obtained: 
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To investigate the bifurcation behaviours of the 3:1 super-harmonic resonance of 
system (3), it is assumed that the excitation frequency is close to 1/3 of the natural frequency: 

 2 2
09w w = +  (5) 

Then, system (3) could be transformed into: 

 2 31 1 1
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x t w x t x t x t x t x t wt
m m m m


+ = − − − +  (6) 

The solution of system (6) is composed of the solution of free vibration and the solu-
tion of forced vibration, which can be set as:  

 1cos cos( )x a B wt= +  (7) 

where 3 ,wt = +  2
1 1 /8 .B F mw=  

According to the calculation of the averaging method, there are: 
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From eq. (4), we obtain:  
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Combined eq. (8) with eq. (9), it yields:  
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By the integral average of eq. (10), one could establish the standard equation as: 
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where 
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which are the equivalent linear damping and equivalent linear stiffness of system (3), respec-
tively. 

Letting 0a = and 0, =  eq. (11) becomes: 
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where a and are the steady-state amplitude and phase, respectively. Eliminating from 
equation (13), one could obtain the amplitude-frequency equation: 

 2 2 2 2 2 2 2 2 6
1 1 1 1[36 4 ( ) 3 ( 2 )] 144 ( )a mw K p a B w C p B  − − + +  =  (14) 

Influence of fractional derivative  

on the system response 

For the sake of simplicity of calculation, letting A = a2, and eq. (14) could be rewrit-
ten as: 
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Using eq. (15) as the bifurcation equation, we can analyse the changes of the bifur-
cation characteristics of the system’s amplitude-frequency curves along with the variations of 
the parameters, and the bifurcation equation should be established as the following form: 

 2 2 2 2 2 2 6
1 1 1 1 1( , ; , ) [36 4 ( ) 3 ( 2 )] 144 ( )G A w K p A mw K p A B w C p B =  − − + + −  (16) 

where A is the state variable, w – the bifurcation parameter, and the coefficient K1 as well as 
the order p of the fractional derivative are the unfolding parameters. 

According to the singularity theory [21], the transition set of eq. (16) includes the 
following three types: 
– B (Bifurcation set) 
 1 1 1( , ; , ) 0, ( , ; , ) 0, ( , ; , ) 0A wG A w K p G A w K p G A w K p= = =  (17) 

– H (Hysteresis set) 
 1 1 1( , ; , ) 0, ( , ; , ) 0, ( , ; , ) 0A AAG A w K p G A w K p G A w K p= = =  (18) 

– D (Double-limit-point set) 
 1 1 1 2( , ; , ) 0, ( , ; , ) 0, 1,2;i A iG A w K p G A w K p i A A= = =   (19) 

Taking m = 5, k = 45, c = 0.2, 1 = 0.4, 
and F1 = 15, the calculation results show that 
both the bifurcation set B and the double-limit-
point set DL are empty sets, the hysteresis set H 
is non-empty set, and the transition set 

B H DL H = = , which is shown in fig. 1. 
The unfolding parameter p – K1 plane is 

divided into three sub-regions by the transition 
set . According to the singularity theory, the 
amplitude-frequency response curves of differ-
ent points (p, K1) in the same region are qualita-
tively the same. Taking a point (p, K1) in each 
region and on the transition set curve, all varie-
ties of the amplitude-frequency response curves 
which are qualitatively different could be ob-
tained. For convenience, each region in fig. 1 is 
marked with a number. 

Taking a given point (p, K1) in the three sub-regions and on the transition set curve 
of fig. 1, the characteristics of amplitude-frequency responses are analysed, and the corre-
sponding amplitude-frequency response curves are shown in fig. 2. 

As can be seen from fig. 2, the parametric region where the amplitude-frequency re-
sponse curve appears multiple solutions is surrounded by the hysteresis set H1 and H2. The 
system’s response in Region 2 is triple-value. Two are stable while the other is unstable, and 
the jump occurs at the two extreme values of the frequency interval of triple-value amplitude 
as shown in fig. 2(c). On the curves H1 and H2, the system’s response is in the critical state of 
occurrence of jump. The type of amplitude-frequency response curve of the system will be 
from figs. 2(a) to 2(c) on H1 as shown in fig. 2(b) and from figs. 2(c) to 2(e) on H2 as shown in 
fig. 2(d). These results just verify the correctness of the theoretical analysis in this part. 

 
Figure 1. Transition set of system (3) 
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Figure 2. Amplitude-frequency responses of  
system (3); (a) parameter (p, K1) in Region 1 of fig. 

1, (b) parameter (p, K1) on H1 of fig. 1,  

(c) parameter (p, K1) in Region 2 of fig. 1,  
(d) parameter (p, K1) on H2 of fig. 1, and  

(e) parameter (p, K1) in Region 3 of fig. 1 

 
The results of the previous analysis show that no matter the value of the parameter  

(p, K1) crosses any line in fig. 1, the topology structure of the system response will change. So 
the transition set curve is just the critical parametric condition for qualitative changes of the 
responses of the system, and the types of dynamic responses of the system could be controlled 
by selecting the appropriate parameters (p, K1) of the fractional derivative. 

Numerical simulation 

From the viewpoint of numerical simulation, we verify the correctness of the theo-
retical results previously obtained. Since the solution (7) contains two frequency components 
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w and 3w, we need to do further spectrum analysis of the steady-state response of system (3) 
in order to obtain the corresponding amplitudes at the frequencies w and 3w, respectively. 
Then they are compared with 2

1 1 /8B F mw= and eq. (14), respectively. Taking the parameters 
as given in fig. 2 to analyse, the corresponding waterfall figures could be obtained as shown 
in fig. 3. 

  

  

 

Figure 3. Waterfall figures of system (3);  
(a) (0.5, –0.4), (b) (0.8, –0.2542256012),  
(c) (1.8, –0.26), (d) (1.91, –0.4889641954),   

and (e) (0.4, –0.76) 
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Figure 4. The comparison of the approximately 
analytical solutions with that by numerical 

simulation; (a) (0.5, –0.4), (b) (0.8, –0.2542256012), 
(c) (1.8, –0.26), (d) (1.91, –0.4889641954),  

and (e) (0.4, –0.76) 

 
In each waterfall figure of fig. 3, for the different excitation frequency w, the spec-

trum analysis amplitudes at the corresponding frequencies w and 3w are obtained, respective-
ly. Then, they are compared with 2

1 1 /8B F mw= in eq. (7) and the amplitude-frequency re-
sponse curves in fig. 2, respectively. The results of numerical simulation and the approximate-
ly analytical solutions are shown in fig. 4. 

The previous results show that the numerical solutions are in good agreements with 
the approximately analytical solutions, which just verify the correctness of the theoretical 
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analysis and show that it is feasible to use the method in this paper to analyse the bifurcation 
behaviour of fractional order system. 

Conclusion 

In this paper, we study the influence of fractional derivative on the super-harmonic 
resonance response of the system. According to the properties of the Caputo fractional deriva-
tive and the periodic characteristics of the response, the original system is transformed into an 
equivalent integer-order system, and the amplitude-frequency response equation of the system 
is obtained by using the deterministic averaging method. Also the critical parametric condi-
tion for the system’s bifurcation is obtained by using the singularity theory, which can provide 
a theoretical guidance for system design in practical engineering. The results of spectrum 
analysis of the original system verify the correctness of the theoretical results obtained in this 
paper. It is concluded that the fractional order p and coefficient K1 can both cause the muta-
tion phenomenon of the system. 
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