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This paper reveals abundant exact analytical solutions to the generalized (3+1)-D
shallow water equation. The generalized bilinear method is used in the solution
process and the obtained solutions include the high-order lump-type solutions,
the three-wave solutions, the breather solutions. The interaction between the
high-order lump-type solutions and the soliton solutions is also elucidated. These
solutions have greatly enriched the generalized (3+1)-D shallow water equation
in open literature.
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Introduction

It is well-known that non-linear evolution equations (NLEE) have a wide applica-
tions in areas of mathematics, physics, fluid mechanics, plasma, optical fiber communication,
biologic nerve propagation, atmospheric science, marine science, and thermal science. There-
fore, the exact solutions of NLEE play an important role in understanding the non-linear phe-
nomena of non-linear science. To find exact solutions of non-linear systems is a difficult and
tedious but very important and meaningful work. So far, several effective methods have been
established by mathematicians and physicists to obtain exact solutions of NLEE [1-8]. By us-
ing these methods, researchers constructed the exact solutions of NLEE, such as soliton [9],
rogue wave [10], breathers [11], periodic wave [12], three-wave solution [13], rational solu-
tions [14], lump solution [15] and interaction solutions [16-18], etc.

As one of the three branches of non-linear science, the theory of solitons has become
an important research field of non-linear science. It has a wide and important role in the fields
of non-linear wave theory and elementary particle theory. Recently, the research of breather
waves [11], rational solutions [14] become a hot research topic. In general, breather waves,
which have a periodic outline in one direction, can degenerate into the rogue wave solutions
in the limiting case. The rational solutions have appeared in many non-linear fields, such as
non-linear optic fibers, Bose-Einstein condensates, biophysics and economics. As one of criti-
cal exact solutions, rational solutions can be used to describe natural phenomena well. In con-
trast to soliton solutions, lump solutions are a kind of rational function solutions, localized in
all directions in the space. In soliton theory, lump solutions have received increasing attention
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recently [15]. In particular, collisions between lump solutions and other forms of soliton solu-
tions have been studied [16-18].

Exact analytical solutions of the generalized
(3+1)-D shallow water equation
We consider the generalized (3+1)-D shallow water equation [14]

Uyogey + Ul +3UyUyy —Uyy —Uy, =0 1)
Researchers studied the rational solutions and the lump solutions (only when z = x)
of the generalized (3+1)-D shallow water equation. In the following, we will study the general
exact analytical solutions of eq. (1).
Step 1. By using the Cole-Hopf transformation:

u(x,y,z,t)=2[In f(x,y,z1)], 2

Equation (1) becomes the generalized Hirota bilinear equation:

GBgsw (f)=(D; D, , - D, D, —D,,D,,)f-f =0 ®3)
where p is an arbitrarily natural number and D — the generalized bilinear differential operator
[3]. We note that when p = 2, the generalized bilinear form is transformed into Hirota bilinear
form.

When taking p = 3, we can obtain the generalized bilinear shallow water equation:

GBGSW(f)'= (D;XDS,)/ - D3,yD3,t - D3,XD3,Z) f 'f =

=23 f fyy + fy fy = fo f + £ f, -, F)=0 (4)
Step 2. We suppose that the generalized bilinear eq. (4) has the following solution:
N an M
f:a0+z(§i iJFZ,'“ij(’?j) ®)
i=1 j=1
& =ayp +@yX+aY + 82 + 8t 17; =bjo +byX+bjy +bjsz+bjt (6)

where ai,, mj,bi (i=1,...,N, j=1,..,.M,and k =0, 1, 2, 3, 4) are arbitrary real constants.

To search for the high-order lump-type solutions, three-wave solutions, breather so-
lutions and interaction solutions between the high-order lump-type solution and other function
solutions, we suppose:

N=3 M=4, n=2 n,=1 ny=1 g, (m)=6€" 0,0p,)=6"
03(773) =cosmz, 94(14) =coshn, ()
The exact analytical solutions of generalized bilinear eq. (4) is written:
f=ay+& +& +& +me™ +mye™ +m,cosn, +m, coshr, (8)

Step 3. By substituting eq. (8) into eq. (4) and collecting all terms with the same order
of X, y, z, t, e™,e"™, sinys, cosys, sinhys, and coshys together, the left-hand side of eq. (4) is



Wang, X., et al.: Abundant Exact Analytical Solutions and Novel of ...
THERMAL SCIENCE: Year 2021, Vol. 25, No. 3B, pp. 2169-2181 2171

converted into another polynomial in x, y, z, t, €™,e", sinys, cosys, sinhys, and coshya. Equat-
ing each coefficient of this different power terms to zero yields a set of non-linear algebraic
equations for ao, ai, bjk, and m;. Solving the algebraic equations by symbolic computation Ma-
ple, yields the following sets of solutions. According to different parameter values, we can ob-
tain abundant exact analytical solutions of the generalized (3+1)-D shallow water eq. (1).

High-order lump-type solutions, three-wave solutions
and Breather solutions

High-order lump-type solutions and lump solutions

Whenm;j=0 (j =1, 2, 3, 4) in eq. (8), the solution (8) represents f = ap + &4 + &? + &2
— Casel.1:

81834 383
a; =0, az=- v 8=0, 8y =0 ay=- » 8y =0
31 34
a.32 = 0, 6.33 = 0, a31a34 * 0
— Casel.2:
A1383, a3183, A31833 Ay;833
ay =0, ay,= vo8 =0, ap=——0 A=, gy =
33 ay ay; az
ap0831 831833
83y = v 8y =-— ;8185833 # 0
a a3
_ Casel.3:
83,83, 81383183, B33y 81383,
&;=0, a,=0 ap=- Bz = — o, 8y = v Bz = —
21 818 45 A
Q1383
Ay =— 0. 3358, # 0

12
where other parameters are arbitrary real constants. By substituting the parameters in Cases
1.1-1.3 into the solution (8) and using the transformation (2), we can obtain the high-order
lump-type solutions of eq. (1).
When mj = 0, a;; =0 (j = 1, 2, 3, 4) in eq. (8), we obtain f = go + &? + &2,
do=4ap+ a104.

~ Case 1.4:
4.2 393 2 4
A =0 A —— Ay (310294 + 3831834 +39334) A = Ay, (8 +3y)
21 =0, Q3= 32 B
31 31
4 3
B = — 7894 (810834 — 3331 +3pag4) a 20
33 = 7 v 831
3ag;
— Case 15:
4 4 3
A — 839834 (849 + @) A = — 839834 (81084 — 351 + B924) 2 =0 a. =0
22 3 v A3 7 v =0, a3
3ay; 3ay;
4.2 3 2
a3 (A0854 +3851894 +3334)
833 =~ 8y 70

3ay,
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— Case 1.6:

2 a2y 2 2
_ 5855 3(a +83)(81 +831) (88 +83133)
4
832 83 (810 +89) (82183, —829831)

23

2 | .2 2
a —_ 2283 3(ag; +a31)(8218p, + A3185,) a. = 220831
24 = 0=

4 ' 3
a3 g (agp +9)(8z183, —ap83) ay;
831833 3(351 + a321)(a21a22 +33,33) 4
834 =— + 7 , g(8y0 +ag) (A8, —aya3) # 0
a3 gy (3y0 +39)
— Casel.7:
2 2
VN 38y, (a3, +a5) .. = 22193+ 8583
8y = v Q3=
a31833 a3
22,8, + 8y 8,,84, +a2a a,0a
_ 1833 +8p189,834 + 33,833 _ 9033 _
Ay = , Agg=—"—>=, a3 =0,8,858535;#0
85783 ay;
— Case 1.8:
4 3(ayay, + a31a32)(a§1 + aé21)2
8y =—ap + v (Ap1834 — 4831 )(Ap183; —Apa5;) # 0
(821834 — Ap431) (32183 — Appa3:)
By = 81 (859804 — B3p834) + 83y (82834 +82433)
2 . .2
ay +a3
A1 (yr8a, + 89y80, ) + Azq (8ar8q, — Aynd
835 = 21 (890834 +85483,) + 831 (835834 — A, 24), a2 +a2, %0
2 2
ay; +az
— Case1.9:
) a0 a,,a a,,a
a, =l o Gl o, %ddp o, _%dn o, g
2
aZl aZl azl a21

where other parameters are arbitrary real constants. By substituting the parameters in Cases
1.4-1.9 into the solution (8) and using the transformation (2), we can obtain the lump solu-
tions of eq. (1) which are different from those lump solutions given in [14].

Three-wave solutions

Whenaix=0(i=1,2,3and k=0, 1, 2, 3,4), n2=—x1, Mz =mg in eq. (8), the solu-
tion (8) represents f = ap + mye™ + my e~ + M3C0Sy3 + MaCOShya.
— Case 2.1:

b
by, =byz =bs; =bsy =by, =by5 =0, b32=—%, b41=%1 by, #0
4 4
— Case 2.2

by, =l =Dy =by, =by =by, =0, bszz_%’ b42=_bléz43’ b, =0
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— Case 2.3:
b,
by =by, =y =byy =by, =by3 =0, by, :__bl3b31, Dyy :_—bw L, b, =0
by, by,
— Case 2.4:
b
b11:b14 :baz :b33 :b41:b44 =0, b34 :_blsbsly b42 :M’ b12b13 #0
by, by
— Case 2.5:

bll:bl4:b31:b34:b42:b43:0* b33 blgbaz b44:_%1 b12¢0
by, by,

— Case 2.6:

b
by, =byz =bs; =by3 =Dy =by, =0, b34:bl4b311 b43:_%: by, #0
1

—  Case 2.7:

by, =byg =Dy =byy =by, =by3 =0, b33:—%, b44:%, by, #0

where other parameters are arbitrary real constants. By substituting the parameters in Cases
2.1-2.7 into the solution (8) and using the transformation (2), we can obtain the three-wave
solutions of eq. (1).

Breather solutions and solitary wave solutions

Whenax=0(i=1,2,3andk=0,1,2,3,4),ma=00rmz =0, na=#zineq. (8), the
solution (8) represents f = ap + mye™ + moe™ + macosyz and f = ap + mie™ + mye™ +

+ mycoshya.
—  Case 3.1:
b
by =0y, =0y =byy =by, =bs3 =0, b, =- blgbsl bzzz_Lbsla by, #0
by bs,
—  Case 3.2
b b
by =y, =0y =by3 =b3 =byy =0, by = bl; 4, b34=2b4—b311 b,, #0
b1 1
—  Case 3.3:
b b
by =byy =0y, =by3 =by; =03y =0, b= bl; A, b33:_2b4—b32' by, #0
b1 b1
—  Case 3.4:

b, =byg =by =by, =, =byy =0, bzzz—bubzs’ %22—%, b, =0
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— Case 3.5:
by4b, b,.b.
) :bl2 :b13:b21:b24:b32 :b33:0: b11: X 1, b22 :_M, b34¢0
by bsy
— Case 3.6:

_ b11bss L by =— ba1bs3 . by, #0
bsp b,

where other parameters are arbitrary real constants. By substituting the parameters in Cases
3.1-3.6 into the solution (8) and using the transformation (2), we can obtain the breather solu-
tions and the solitary wave solutions of eq. (1).

Remark 2.1: In addition to Cases 3.1-3.6, we can get the special results of Cases 2.2
and 2.4 when bsz = 0.

ag =by, =Bz =by =by3 =Dy =by, =0, by =

Collisions between lump and soliton solutions

Between lumps and a pair of line soliton solution
When m3 = 0, mg = 0 in eq. (8), the solution (8) represents f = ag + &* + &2+ &2 +
+mye™ + mee”,
When m; = my, the solution (8) is written f=ag + &% + &2 + &2 + myeh + mye',
Case 4.1:

4,8, 824837
& =0,a5=- , Qg =8y =83=285 =0, assz_a—’ Ag4 =y, =3 =0
21 21

by =222 b b0 by 2% (s, 40)

ay; ay
— Case4.2:
812894 Q9834
3y =a, =0, 8;=- , Ay =ap=0, ay=——""", ap=a5k=b,=b;3=0
a3 Q3
A3y 30y
by =——2=, by =Dby=0 by=- v (a3 #0)
8 47
— Case4.3:
813831
3 =23;=0, a,=- , Qg =8y =y =83 =8y =a3p =33 =0, =b3=0
34
CN a4,
by, = v by =byy =0, by = . (831834 2 0)
az a3
— Case4.4:

84383,
Qp =8 =8y =8y =8y =8y =83 =0, ay= ;B4 =byp =D =0
1

a a,5b
bl4=_Lb11, by, =b,3 =0, by, =—=2  (a,=0)
2P, 12

where other parameters are arbitrary real constants.
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When mz = my, 572 = —#1, the solution (8) is written f = ag + &* + &2 + &2 + mpe +

+me ™,
— Case 4.5:
8983 A3183, Appdsy Azpd3
a,=0 ag=- v 84 =0, ay=- y Q= =
31 22 az; a
83,834 I
g =———", bp=b3=0 by= , (283 #0)
az ag;
— Case 4.6:
139 87833
8y =8 =28, =0, ay3= , Ay =85=0, ap= , g =b, =b3=0
Q) a3
3y
by =——=, (a,a3#0)
42
— Case4.7:
Q9834 Ap3d3
a; =0, ag=- v Qg =ay =0, 8y =- » 8y =8y =ag =by; =0
31 Az
a3qbrp
b =——"==, b,=0, (8333 #0)
31
— Case 4.8:
81393
a;,=0, a,=- 2. Ay =8y =8y =83 =8y =83 =g =hy, =b3=0

34
a
by, = Lbll: (831834 # 0)
31

where other parameters are arbitrary real constants. By substituting the parameters in Cases
4.1-4.8 into the solution (8) and using the transformation (2), we can obtain the interaction so-
lutions between the high-order lump-type solution and a pair of line soliton solution of eq. (1).

Remark 2.2: In addition to Cases 4.5-4.8, we can get the special results of Cases 4.1,
4.2, and 4.4 when by; = bys.

Between lumps and one line-soliton solution

When mz =0, ms=0and mz=0o0rmy =0, #2 =-#1 in (8), the solution (8) represents
fzag+ &+ &2+ &2 +mueh orf=ap + &t + &2 + &2+ mae

— Casebh.1:
a3183, Q383183 Q133 A1393,
21 81,8 12 app
1393 a3b,
Ay =——"—-, b;=0 by= , by =0, (apa, #0)
42 CP)

where other parameters are arbitrary real constants. By substituting the parameters in Case 5.1
into the solution (8) and using the transformation (2), we can obtain the interaction solutions
between the high-order lump-type solution and one line-soliton solution of eq. (1).
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Remark 2.3: In addition to Case 5.1, we can get the same results as Cases 4.7, 4.8
and the special results of Cases 4.1, 4.2, and 4.4 when b21 = b1s.

Between lumps and three-wave solution

When mi =my (i = 2, 3, 4), m1 £ 0, 2 = —#1 in eq. (8), the solution (8) represents
f=ap+ &%+ &2+ &2+ mye + mpe ™ + MyCcoSyz+ M1COShya.

— Case6.1:
1,85, Ap483;
a5, =0, ay=- » Qg =8y =83 =085 =0, agp=- 8y =Dy, =by3=0
51 21
aybyy ap4by 3240
by =—"==, by =by=0 by= v b =by =0, by =——, (ay#0)
ay, 21 42
— Case 6.2
315894 812834
o =ay =ay =0, ay=- » Bp=a3=0, ay=- . 83 =835 =D0py =0
a3 13
a3y ay3hsy
by=0, by=-——"=, by =by3=0, by =- » Dgp =byg =0
) A )
33041
b44 == ) (a12 &3 # O)
12
— Case 6.3

A1393,
By =8y =8y =8y =83 =8y =83 =0, ag= , Agy =D, =b3=0
)

A3y 33y CIR
by=——="2, DBy =Dby3=0, by =——, by =by=0, by =- » (8, #0)
a12 8.12 12
— Case 6.4:
1393
al].:O’ a12:_a—’ a14 :a21:a22 :a23 :a.24 :a32 :a.33 :b-]_2:b-]_320
34
aggby; agahyy
by =—"—==, by =Dby, by =byy=0, by =—"—=
a3 o )
A34041
b, =bi =0, by, = o (ag1834 # 0)
31
— Case 6.5:
31,83, 823831
a,=0, ag=—""", ay=2a,=0, ay=- . By =ag =ag =D =0
ag g4

a a
L .- S
agy A a3
a
31
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— Case 6.6:
89837834 91395 Azpdsy 89834
=38, =0, ay=—"0 ay= v Ay =T, Ay =
Q38 ap axp a3

332 &
33 = 12 2, b, =b; =0, b14=—las—bll’ by =by, by =by =0

12 12

a a3
b34 = —Lbal, b42 = b43 = O| b44 = ]; 2 ’ (a12a13a22 * 0)

2P 17
— Case6.7:
80834 A3183, Appdzy A3p834
% =0, ag=- v 8, =0, 8y =- v A= v Q=
a3 ay 31 ay)
_ 883 _ Gzdy —b.=0 _ by _ —b. =0
A3 = , Qg =———, b =b3=0, by=—"—= by =by, by =by=
ay) az Az
3405 840y
b34 = b42 = b43 = 0, b44 = ’ (a22a3l * 0)
az Az
— Case 6.8:
9139y 81890833 915833
a11=a14=a21=0, a23= s a24=0, a30=—' a.31=0, 8.32 = == 99
12 33 a3

agy =b, =bj3 =0, b14:_a;3—blli by =byy, by =b3 =0, b34:—ala3—b31

12 12

CIR
by, =by3 =0, by, =- - (8128138, # 0)
45

where other parameters are arbitrary real constants. By substituting the parameters in Cases
6.1-6.8 into the solution (8) and using the transformation (2), we can obtain the interaction so-
lutions between the high-order lump-type solution and three-wave solution of eq. (1).

Between lumps and breather solution (or solitary wave solution)

When = -1, mi=my (i=2,3),ma=0Jormi=my (i=2,4), m3=0, 4 =53] in
eq. (8), the solution (8) represents f = ag + &% + &2 + &2 + mye + mie ™+ myCOSys Of
f=ao+ &t + &2 + &2 + mye™ + mpe "t +macoshys.

— Case 7.1
81284 842834
=8, =0, ay=——""", ap=a3=0 a3=- , 8 =0
a3 33

ag3 =by, =b3 =0, b14:_a;3—b11' b3, =bs3 =0, b34:—a13—b31: (8g,a5 # 0)

12 8,
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— Case7.2:

Q1383
a,=0, a,=- , Qg =8y =8y =8, =8y =a3k =833 =Db, =b;3=0
34

by :aLbll’ by, =bs3 =0, by = ey » (851834 #0)

az a3

where other parameters are arbitrary real constants. By substituting the parameters in Cases
7.1 and 7.2 into the solution (8) and using the transformation (2), we can obtain the interaction
solutions between the high-order lump-type solution and breather solution (or the solitary
wave solution) of eq. (1).

Remark 2.4: In addition to Cases 7.1 and 7.2, we can get the special results of Cases
6.1, 6.3, and 6.5-6.8 as long as b4y = 0.

Between lumps and cos-cosh periodic wave solution

When mi = 0 (i = 1, 2), mams # 0 in eq. (8), the solution (8) represents f = ag + &4 +
+ &2 + £3% + M3cosys + MaCoshia.

— Case8.1:
87833 o483,
ao=2a,=0 a3= ,oay =0, a;=- , 8y =8y =ag =ag, =Dy =by3=0
3o 33
33b 3304y
byy =——2==, by, =by3 =0, by =- , (832833 2 0)
3 3
— Case 8.2:
89837834 A133y A3y 815834
3 =33 =84 =0, =", B =—"F, y=——, g =——
Q38 A ay a3
81383, 3y3b3; 3by
33 = , by =byy =0, by =- v by =Dby3=0, by =- v (apdyzay #0)
A ap app
— Case 8.3:
A383; A3183, Appdsy Azpdyy
a'10=a'11=0’ a12=— , al4=0’ a21=— y a23=——, a24 = e o7
34 ax a3 )

A3, 30834 3405,
Az = , Agg=——r, Dby =byy =0, by =—"4=
22 a3 Ay

3404y
b42 = b43 =0, b44 = a 1 (a22a31a34 # O)
31

where other parameters are arbitrary real constants. By substituting the parameters in Cases
8.1-8.3 into the solution (8) and using the transformation (2), we can obtain the interaction so-
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lutions between the high-order lump-type solution and cos-cosh periodic wave solution of eq.

).

Remark 2.5: In addition to Cases 8.1-8.3, we can get the special results of Case 4.3
(73 = n1, na = n2), Case 5.1 (53 = na = n1, a0 = 0), Case 6.2 (b1 = 0), Case 6.5 (b2 = 0), and
Cases 9.1-9.2 (a4 = 13).

Between lumps and cos periodic wave solution
(or hyperbolic function solution)

Whenmi=0(i=1,24), ms#0,0ormi=0(i=1,2,3), ms#0, 52 = 53), in eq. (8),
the solution (8) represents f = ag + &* + &2 + &2 + macosyz or f = ag + &% + &2 + &2 +

+ macoshys.
— Case 9.1:
87833 83183, 831833 81833
ao=a;=0, a3= oAy =0, a,=- v Q= Ay =——_———
37 ay; ay; az

ap0831 831833 A33bs,
30 = ) a34 == ' b31 = O! b33 =T b34 = O’ (a21a32 # O)
21 32 as
— Case9.2:
Q1395 82850834 Q983
o =8y =y =8y =83 =0, Ay=——"", H=- v A=
a2 38 a3

ag =83 =b3 =0, by = a§b32 , b3y =0, (a3 #0)
12
where other parameters are arbitrary real constants. By substituting the parameters in Cases
9.1 and 9.2 into the solution (8) and using the transformation (2), we can obtain the interaction
solutions between the high-order lump-type solution and cos periodic wave solution (or soli-
tary wave solution) of eq. (1).

Remark 2.6: In addition to Cases 9.1-9.2, we can get the special results of Case 4.3
(773 =11, b21 = 0), Case 5.1 (7’]3 =1, a0 = 0), Case 6.2 (b11 = b41 = 0), Case 6.5 (alo = b11 =
= ba; = 0), and Cases 8.1-8.3 (b1 = 0).

Step 4. By substituting the parameters ao, aix, bjx, and m; in Cases 1.1- 9.2 into eqg. (8)
and using eg. (2), we can obtain abundant exact analytical solutions and novel interaction
phenomena of the generalized (3+1)-D shallow water eq. (1).

As the example, substituting the results of Case 6.1 to eq. (8), we can get the exact
solution f of the generalized bilinear shallow water eq. (4):

3458 824837

4

2

f2230+[312y——a Z+aloj + (@ X +apyt +ay,) +[a32y—
21

2
z+a30j +
21

+mlexp[bl1x + a;“—b”t + bloj + mlexp[—bllx - a;“—b”t - bloj +

21 21

+m, cos (bmx B2l bmj +my cosh [b“x ol b4oj 9
21 21
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By using the transformation (2), we get the following interaction solution between the
high-order lump-type solution and three-wave solution of the generalize shallow water eq. (1):

21, (x,y,2,t)

f(x,y,2,t) (10)

u(x,y,z,t) =

where f (x, y, z, t) is given in eq. (9).

In order to exhibit the dynamical characteristics of these waves, we can plot various
3-D, contour and density plots. These Figures can show the physical properties, structures and
the energy distribution for the exact solutions (10). The phenomenon of the interaction solu-
tion is very strange and analogous to rogue wave. The process of interaction changes the am-
plitudes, shapes and velocities of both waves. This type of interaction solutions provide a
method to forecast the appearance of rogue waves, such as financial rogue wave, optical
rogue wave and plasma rogue wave, through analyzing the relations between lump wave part
and soliton wave part.

Conclusions

In this paper, we gave a novel form of exact analytical solution to the generalized
(3+1)-D shallow water equation. To search for various kinds of exact analytical solutions, we
are free to choose the values of N, M, and the basis function g(#) in eq. (5), such as: lump so-
lution (N =2, n1 = ny =1, m; = 0), lump-type solution (N =3, n1 =n2 =nz =1, m; = 0), high-
order lump solution (N = 2, n; = n = 2, mj = 0), high-order lump-type solution
(N=3,n.=2,n2=n3 =1, mi =0), lump-kink solution (N=2,n1=n,=1; M =1, g(y) = ¢7),
and lump-soliton solution (N =2,n; =n, =1; M =1, g(5) = coshy), etc.

As the example, by choosing the basic functions gi(y1) =e™, g(42) =e™,
03(n3) = cosns, ga(na) = coshna, we successfully constructed abundant exact analytical solu-
tions of the generalized (3+1)-D shallow water equation based on the generalized bilinear
method, and these solutions contained the high-order lump-type solutions, the three-wave so-
lutions, the breather solutions, the interaction solution between high-order lump-type solu-
tions and soliton solutions. These solutions will greatly expand the exact solutions of the gen-
eralized (3+1)-D shallow water equation on the existing [14]. These new solutions are signifi-
cant to understand the propagation processes for non-linear waves in fluid mechanics and the
explanation of some special physical problems.

By using eq. (5), we can construct other rational solution and their interaction solu-
tion to the generalized (3+1)-D shallow water equation. Such as, when gi(n1) = €™,
92(172) = €, gs(n3)= sinys, ga(y7a) = sinhya or gs(ns) = tanys, ga(y74) = tanhya, we can obtain the
interaction solution between rational solution and soliton solutions, periodic wave solution.
But due to the lack of space, we will discuss these solutions in another paper. The method can
be used for many other NLEE in mathematical physics.
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