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The lotus leaf surface is modified by covering nanofibers to check its wetting 
property. The well-known lotus effect of the modified surface is greatly weakened, 
and a hydrophilic property is found. The geometric potential theory is used to ex-
plain the phenomenon, it shows that the two adjacent nanofibers can produce a 
high geometric potential to push water molecules to move along the fibers, as a 
result, a hydrophilic surface is predicted after surface modification. An experi-
ment is designed to elucidate the main factors affecting the wetting property of 
the modified surface of lotus leaf.  
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Introduction 

The lotus possesses a peculiar water-repellent characteristic that enhances the mobil-

ity of droplets for self-cleaning purpose [1, 2]. The super-hydrophobic property of lotus leaf 

has been extensively studied. Lotus leaf has a high surface energy (geometric potential), re-

sulting from multi-scale micro/nanostructures, and several design ideas have been inspired by 

lotus leaf [3, 4]. In recent years, smart surface with wettability transition property has become 

a research hotspot for many potential application [5-10]. The surface wettability can be modi-

fied by the chemical manner [11], coating [12], lasers [13], ultraviolet-driven method [14], 

and so on. 

Ren et al. [15] prepared an oil/water separation material with TiO2 at SA/CS coat-

ing, which could be converted from superhydrophobicity to superhydrophilicity under ammo-

nia treatment, and the superhydrophobicity could be restored again after heating treatment. 

Xia et al. [16] and coworkers prepared SIPN hydrogels which showed rapid conversion from 

being hydrophilic at 20 ℃ to being hydrophobic at 45 ℃. Ding et al. [17] reported a strategy 

to transform the membrane’s hydrophobicity into high hydrophilicity through a one-step 

levodopa (l-DOPA)/3-amino-propyltriethoxysilane (APTES) reaction. Guo et al. [18] pre-

pared a counterion-switched reversibly hydrophilic and hydrophobic surface of TiO2-loaded 

polyelectrolyte membrane by layer-by-layer assembly of PSS and PDDA containing TiO2 at 
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PDDA nanoparticles on the hydrolyzed PAN substrate membrane. The obtained membranes 

showed different hydrophilicity and hydrophobicity with various counterions. 

This paper shows a surface’s wetting property depends upon its geometric potential. 

The change of the surface geometric potential can convert the hydrophobicity to hydrophilici-

ty, and vice versa.  

Geometric potential and lotus effect 

Many leaves of aquatic plants, notably the lotus leaf, have gained much attention be-

cause of their super-hydrophobicity, self-cleaning characteristics, and outstanding mechanical 

properties. The super-hydrophobi-

city of lotus is primarily due to mul-

ti-scale micro/nanostructures on the 

surface [19-21]. The secret of water 

repellency and self-cleaning proper-

ties of lotus have been found out to 

be induced by an intrinsic hierarchy 

built by randomly oriented small 

hydrophobic wax tubules on the top 

of convex papillae of epidermal 

cells [22]. Figure 1 shows digital 

images of lotus leaf. The veins on 

the lotus leaf exhibit fractal charac-

teristics with self-similarity. 

By using the SEM observation, 

the representative images of the lo-

tus surface are demonstrated in fig. 

2. The upper epidermis of lotus leaf 

is characterized by micro/nanosize 

protrusions epidermal cells and val-

leys uniformly, which are decorated 

with an additional layer of wax 

crystalloids. The lower epidermis of 

lotus leaf is composed of tree bark-

like cuticular folds which distribute 

all over the whole surface. The mi-

cro structure of vein is shown in 

fig. 3. It is noted that the protrusions 

lay on both side of the upper epi-

dermis along with vein. 

The geometric potential theory [23-26] implies that any surface can produce a force, 

it can be gravity, Casimir force, capillary force or others. The geometric potential theory can 

well explain how to form a shaped fiber or an unsmooth fiber in the spinning process [27, 28], 

the smart adhesion by the surface treatment [29], the cell orientation during the cell culture 

[30], and capillary effect [31, 32]. It is also interesting to find that Fangzhu, an ancient device 

in more than 5000 years ago, collect water from air, works according to the geometric poten-

tial of the Fangzhu’s surface [33].  

   

Figure 1. Lotus leaf 

  

Figure 2. The SEM images of the top surfaces of lotus 
between the veins 

   

Figure 3. The SEM images of the top surfaces of lotus vein 
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The geometric potential produced by a surface can be expressed [33-35]: 

 
k

E
r

=  (1) 

where E is the geometric potential, r – the equivalent radius of the surface, and k – a constant. 

The boundary-induced force can be obtained: 
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When the surface radius becomes smaller, a higher force is produced. When the sur-

face of the water molecule approaches to nanoscale protrusions on the surface, the geometric 

potential can produce a high attraction force which 

attracts water molecules onto their surface. Figure 

4 illustrates the mechanism of a drop of water 

formation. Along with more and more water mol-

ecules are attached on the lotus protrusions, water 

molecules can form a water bridge between two 

micro size protrusions. For the distance is very 

small, two water bridges will attract and get to-

gether into a big droplet of water, see fig. 4. 

Lotus leaf’s surface treatment by 

electrospinning  

Electrospinning has attracted considerable attention due to its cost-effectiveness and 

versatility [36-41]. As one of the most efficient techniques, it is being used to fabricate nano-

fibers ranging from single fiber to ordered arrangement fibers. Electrospinning is not only 

employed in university laboratories, but is also increasingly being applied in industry.  

The morphologies and micro-

structures of top surface of lotus 

leaf covered with electrospun pol-

yvinyl alcohol (PVA) nanofibers 

were determined using a SEM, Hi-

tachi S-4800, Tokyo, Japan, see 

fig. 5. The PVA nanofibers exhib-

ited uniform morphologies and 

randomly distributed that adhered 

to each other. 

When a water drop is placed on the two adjacent nanofibers, it will move along the 

fibers [42] due to a capillary-like force which is induced by the boundaries of nanofibers, and 

it will spread to other adjacent fibers, and a liquid column is formed [43-46]. The boundary-

induced force will produce an unsmooth boundary of the water drop as illustrated in fig. 6. 

The geometric potential becomes weak when the distance between two adjacent fibers be-

comes wide. For an aligned nanofiber membrane, a capillary-like force is produced, which is 

parallel to the fiber orientation, while for a randomly distributed nanofiber membrane, the 

boundary-induced force induced by adjacent nanofibers are randomly directed. 

 

Figure 4. The mechanism of droplet 
formation on lotus surface  

  

Figure 5. The SEM images of modified surface of a lotus leaf 

with PVA nanofibers  
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When the PVA nanofibers were spun onto the surface of the lotus leaf, they random-

ly distributed. Droplets on the disordered nanofibers may spread outwards, see fig. 7. Hence, 

the wettability of the lotus leaf can be controlled by nanofiber, from a hydrophobicity to hy-

drophilicity.  

 

Figure 6. The boundary-induced force  

between two adjacent nanofibers 

 

Figure 7. The mechanism of droplet wetting in 

nanofibers on lotus surface 

Experiment verification  

The PVA used in this experiment was obtained from Shanghai Aladdin Biochemical 

Technology Co., Ltd. (Shanghai, China), and directly used as received without any further pu-

rification. It was stored at room temperature and alcoholysis degree of the PVA was  

98-99.0 mol%. For this study, lotus leaves were obtained from a lotus pool in Suzhou.  
The PVA solution was prepared at room tempera-

ture by dissolving the polymer in deionized water with 

a concentration of 8 wt.%. The PVA solution was mag-

netically stirred at 80 °C for two hours to ensure com-

plete dissolution and prepared for a uniform and trans-

parent solution. 

The equipment for electrospinning was composed 

of a high voltage power supply, syringe pump, and re-

ceptor. The receptor consisted of lotus leaf and metal 

plate. The lotus leaf was placed on the metal plate, as 

shown in fig. 8. The solution was loaded into a 10 mL 

syringe. The needle had an inner diameter of 0.7 mm. 

The syringe pump was used to dispense the polymer so-

lution at a feed rate of 1 mL per hour. The needle-to-

receptor distance was maintained at 15 cm. The poly-

mer solution was spun at room temperature at a driving 

voltage of 20 kV. The needle was positively charged 

and receptor was negatively charged. Continuous nano-

fibers were deposited on the surface of the lotus leaf and collected in the form of non-woven 

nanofiber membrane.  

  

 

Figure 8. The equipment for 

electrospinning with lotus leaf as a 
receptor 
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Results and discussion 

The nanofibers were deposited on the lotus 

leaf’s surface due to the electric field force. The 

thickness of the formed nanofiber membrane 

was characterized by the spinning time with 5, 

10, 30 seconds, 1 minute, 5 minutes, and 10 

minutes, respectively. For comparison, nano-

fibers were also deposited on a foil receptor for 

10 minutes, see tab. 1. Sample 1 was a lotus leaf, 

Samples 2-7 were membranes deposited on the 

lotus leaf with different spinning time, and Sam-

ple 8 was membrane deposited on the foil. With 

the electrospinning time increasing, the thick-

ness and nanofibers quantities increased, fig. 9. 

Table 1. Electrospinning time for different samples 

Water drops were placed on the samples surface using a syringe with 0.7 mm inner 

diameter needle. The water drops on the different surface were shown in fig. 10. The fibers on 

the lotus leaf’s surface played an important role 

in the wetting performance. Spherical water 

drop was floating on the top surface of the lotus 

leaf. While the water drops became ellipse 

spheres on the lotus leaf’s surfaces covered 

with nanofibers. With the increasing of the 

nanofibers quantities, the water drops on the lo-

tus leaf’s surfaces gradually became more flat, 

and the surfaces became wetted. It demonstrat-

ed that the water drop spread on the nanofibers 

surface. 

Contact angle (CA) was analyzed using a Kruss DSA 100 apparatus (Kruss Compa-

ny, Germany). The sample was placed on a moveable table. A motor was employed to drive a 

syringe to pump water steadily into a drop. Each sample measured three times and its mean 

value was used. Table 2 gave water contact angles of different surfaces. The contact angle on 

the top surface of lotus leaf in the ambient air was about 154.5°. With the increase of the nan-

ofibers quantities, the contact angle decreased, shown in fig. 11. The sample presented hydro-

philicity, when the nanofibers increased to a critical value on the lotus leaf’s surface, which 

was finally switched hydrophobicity to hydrophilicity.  

Table 2. Contact angles on different surfaces 

 

Figure 9. The images of the Samples;  

1 – lotus leaf, (2-7) – nanofiber membrane on lotus 
with different spinning time, and 8 – nanofiber 
membrane on foil 

Sample no. 1 2 3 4 5 6 7 8 

Receptor Lotus Lotus Lotus Lotus Lotus Lotus Lotus Foil 

Electrospinning time 0 s 5 s 10 s 30 s 1 min 5 min 10 min 10 min 

 

Figure 10. Images of water drops on different 
surfaces 

Sample no 1 2 3 4 5 6 7 8 

Contact angle [°] 154.5 99.5 92.3 81 71.1 65 58 49.3 
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Figure 11. The images of contact angle on the surfaces of different samples 

Conclusion 

This paper revealed the mechanism of lotus effect and water droplet’s spreading in 

nanofibers on the lotus leaf’s surface, which could be well explained by the geometric poten-

tial theory. The lotus leaf was used as a receptor in the electrospinning process, and the wet-

ting characteristics of modified surface was changed. Results showed that drop wetting length 

and contact angle increased with nanofibers increasing. The thickness of the nanofiber mem-

brane played an important role in switching from hydrophobicity to hydrophilicity. This was 

an excellent method for understanding wetting on nanostructured surfaces. It demonstrated a 

simple method for surface wettability that can be manipulated reversibly in a controlled man-

ner from a hydrophilic state to a hydrophobic state, and had a great potential in many surface 

applications. 
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