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Non-linear heat conduction with a power-law thermal diffusivity and ramped sur-
face temperature has been solved by the double-integration technique of the in-
tegral-balance integral method. The case of a semi-infinite medium and infinite 
ramp of surface temperature has been considered as example demonstrating the 
versatility of the solution approach. The thermal penetration depth and solution 
behaviours with finite speeds have been analyzed.
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Introduction

Problem statement

Let us consider the heat conduction equation:
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 ∂ ∂ ∂ = = >  ∂ ∂ ∂   
(1)

with a scaled power-law relationship which is related to temperature-dependent thermal con-
ductivity k = k0(T/Tref)m assuming the product of the density and heat capacity ρCp as a tempera-
ture-independent value when heat conduction is modelled.

The model eq. (1), in contrast to the linear diffusion equation (m = 0), is uniformly 
parabolic in any region where T is not zero, but degenerates in the vicinity of any point where 
T = 0 [1]. The main performance of this degeneracy is that any disturbance propagates at finite 
speed giving rise to a front or interface in the solution separating disturbed and undisturbed 
medium [2].

It is worthy to note that despite the fact that the problem eq. (1) is defined as a transient 
heat conduction there are many physical process described by eq. (1) such as creeping flows [3], 
non-linear heat conductivity [4], non-linear diffusion [5], porous media flow [6], etc. All cases 
where m > 1 belong to the family of slow diffusion problems [2].

The difficulties inherent in obtaining solutions for this class of equations have mo-
tivated a variety of solution methods, both exact and approximate ones such as: waiting-time 
approach [3], asymptotic methods [7], similarity solutions [1, 2], analytic moment methods [1], 
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a linearization through the Kirchhoff transformation [8], Heat-balance integral method (HBIM) 
[9] with Dirichlet boundary condition of the model eq. (1) and transformation the variables  
φ = Tm and τ = t/m [10]. Double-integration method (DIM) has been applied in [11].

Ramp surface temperature as boundary condition

 The surface heating (x = 0) represented by a time-dependent (ramped) temperature 
can be expressed in general form as h(t) = Ts = T0 + b0t p/2, where p > 0. The boundary condition 
can be defined:

/2
0 0 0,    0, ( ) , 0p

s sT T t h t T T b t t= < = = + > (2)

The exact solution of this problem developed in [12] with constant thermal diffusivity 
a and surface temperature Ts = b0t p/2 is (presented in terms of the original solution):
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∫ (3)

where Φ is the error function, ξ = x/2(at)1/2 is similarity variable, Γ(•) is the Gamma function. As 
it mentioned in [12] about the solution eq. (3) it may be used with tabulated functions. However, 
despite the exactness, this approach is not always useful to handle in engineering calculations.

Aim

The present article reports an analysis about integral-balance solutions of the model 
eq. (1) in case of time-dependent surface temperature as boundary condition and a non-linear 
(power-law) thermal diffusivity. To our knowledge, no attempts to solve this problem by the 
integral balance method (without a preliminary linearization by the Kirchhoff transform) have 
been reported in the literature.

Problem development

Dimensionless governing equation and assumed profile

The scaled diffusivity in case of heat conduction is commonly expressed as  
a = a0(T/Tref)m where Tref is commonly accepted room temperature of about 20 °C and dif-
fers from the initial medium temperature. In this context, the case of thermal diffusivity with  
Tref ≠ T0 ≠ 0 can be rescaled as aeffum = a0kT (T/T0)m where u = (T/T0), kT = (T/Tref)m = constant and 
aeff = a0kT. When Tref = T0 ≠ 0, we get kT = 1 and with u = T/T0 we have:

0
mu ua u

t x x
∂ ∂ ∂ =  ∂ ∂ ∂ 

(4)

Double integration method 

 Expressing eq. (6) through the new variable U and integrating from 0 to δ we get the 
first version of eq. (5). Then application of the Leibniz rule to the integral leads to the second 
form of eq. (5):
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∂ ∂ ∂   = − ⇒ = −   ∂ ∂ ∂   ∫ ∫ (5)

This is the principle equation of the HBIM of Goodman [9, 10], where replacing U 
by Ua we can develop an equation about δ(t). As mentioned earlier, the main drawback comes 
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from the fact that the gradient a0Um∂U(0, T)/∂x depends on the type of the function chosen as 
assumed profile.

With the double integration method the first step is the integration of eq. (4) from  
0 to x: 

0
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d  d
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mU Ux a U x
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ ∫ ∫ (6)

Representing the integral in the left-side of eq. (5):
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Subtracting eq. (6) from eq. (7) and integrating the resulting equation from 0 to δ:
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Now, we may rearrange the term under the integral sign in the right-hand side of  
eq. (8) as ∂U/∂x = 1/(m + 1) ∂Um + 1/∂x [11]. Then, the integration in eq. (8) yields [11]:

( )10

0

d d d
1

0,
d

m

x

t
a

U x x U
t m

δ δ
+

 
  =
  + 
∫ ∫ (9)

Equation (9) is the principle relationship of DIM when the thermal diffusivity is 
non-linear (power-law). This is not exactly the method used in [30], since the order of integra-
tions is different, but the demonstrated approach allows straightforward solutions of non-linear 
problems [27, 28].

Assumed profile 

The integral-balance solution uses an assumed parabolic profile with unspecified ex-
ponent [11]:

1
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δ
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 

(10)

The profile eq. (10) satisfies the condition at x = 0, i. e. T(0, t) = Ts as well as the 
Goodman's conditions [9] T(δ, t) = T0 and k(∂T/∂x)x=δ = 0. The condition at x = 0 defines Ts = T0 
+ b0t p/2: 
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(11)

Then, with ua = Ta/T0 and b0/T0 = b the dimensionless approximate profile:
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The introduction of U = u – 1 does not change the structure of the dimensionless 
profile eq. (4) and the surface temperature in terms of the new dimensionless variable is Us= 
b0t p/2. The approximate profile Ua satisfies the Goodman's conditions because at x = δ we have  
ua = T/T0 = 1 and therefore, Ua(δ, t) = 0 and k(∂Ua/∂x) x=δ = 0. 

Approximate solution

Penetration depth

Without loss of generality we may define the profile as θa = Ua/b = tp/2(1 – x/δ)n. We 
start with the principle DIM eq. (9) which with the boundary condition at x = 0 an the approx-
imate profile presented as θa:
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The integration of eq. (12) yields:
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or in a compact form:
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This expression indicates that only in the case of m = 0 (the temperature-independent 
thermal diffusivity) the thermal front propagates in accordance with the square-root law. For  
m = 0 and p = 0, i. e. the linear Dirichlet problem:

	 ( )( )0 1 2a t n nδ = + +

as it was developed in [14].

Approximate profile

Therefore, using expression for δ(t) and the definition eq. (10), the approximate pro-
file can be presented in several forms:
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The approximate profile defines the non-Boltzmann similarity variable ηp. 
For m = 0, the new variable ηp reduces to the Boltzmann similarity variable η0 = (a0t)1/2 
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and relationship between them:
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For p = 2 (linear ramp condition) this relationship:
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Further, the solution can be presented against the normalized similarity variable  
X = ηp/Fn,m,p in the form U(X, t) = (1 – X)n, where 0 < X < 1. The function Fn,m,p is defined by the 
penetration depth in the form:
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Therefore, the boundary conditions at the front of the penetration layer can be ex-
pressed in two different forms:
–– With ηp as independent variable. In this case the condition Ux(δ, t): 
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This condition is satisfied for ηp = Fn,m,p. Therefore, the temperature profile should cross 
the abscissa at different lengths [1] depending of the values of the exponent n as well as the 
parameters m and p. In general, for stipulated n and p, the increase in value of m reduces the 
penetration depth.
––  With X as independent variable the condition eq. (24) is satisfied at X = 1 and can be re-writ-

ten as UX(1, t) = 0. Therefore, with the normalized independent variable X, all temperature 
profiles should cross the abscissa at X = 1 [1]. 

Again, with increase in m the penetration depth reduces and this effect is visible when 
the similarity variable ηp is used as independent variable, but becomes indistinguishable when 
the profiles are presented against X = ηp     /Fn,m,p as independent variable. To clarify this point, 
prior to the further development of the solution, we will simulate temperature profiles with 
exponents satisfying the reciprocal rule n = 1/m established in the approximate analytical [1] 
and exact solutions [15] of the problem at p = 0 and verified in [10, 11]. The plots presented 
in fig. 1 undoubtedly demonstrate the retardation effect when the value of m increases. The 
penetration depth becomes shorter when m increase (more obvious in case of slow diffusions 
for m > 1) with the similarity variable ηp as independent variable. Moreover, the increase in 
m makes the profile more convex and vice versa. On the other hand, when the profiles are 
plotted against the normalized similarity variable X = ηp  /Fn,m,p, the effect of the variation of  
n = 1/m is the same, but now all curves cross the abscissa at X = 1. Therefore, irrespective of the 
independent variable used, all exponents obeying the reciprocal law provide convex profiles for 
slow diffusion (n < 1, m > 1) and concave profiles for fast diffusion (n > 1, m < 1) . The present 
article will continue with slow diffusion problems only.

Surface thermal impedance 

With Ts = T0*t at the boundary x = 0 we may calculate the surface thermal impedance 
as Zs = Ts/qs:
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If, for example, m = 0 (the linear case), then the exact surface thermal impedance:
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That is, the surface thermal impedance decreases in time due the non-linearity in the ther-
mal diffusivity in contrast to the linear case. Similar relationships can be developed in the general 
case for p ≠ 2. In this context, with a power-law ramp of the surface temperature the surface flux:
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Thus, the thermal impedance can be evaluated in straightforward manner.

Optimization of the approximate solution

The optimization procedure focuses on the determination of the optimal exponent n 
assuring minimum error of approximation. Since the exponent of the parabolic profile cannot be 
defined through the boundary conditions we have to apply additional conditions to find optimal 
one. Since both HBIM and DIM are restricted to the zeroth moment, the accuracy of approxi-
mation depends on the values of the exponent n. 

Restrictions at the boundaries of the penetration layer

First of all, the approximate profile satisfies the heat-balance integral but not the orig-
inal heat conduction equation. Therefore, the function φ[ua(x, t)]:

( ) 0, ma a
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u x t a u
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(19)

should be zero if ua matches the exact solution, otherwise it should attain a minimum for a 
certain value of the exponent n (the only unspecified parameter of the approximate profile). 
At this point, we have to remember that the assumed profile is designed with respect to the 
space x-ordinate, especially with respect to the Zener' co-ordinate [16] ξ = x/δ, where 0 < ξ < 1, 
and therefore, the normalized approximate profile in the square [1, 1], i. e. 0 < ξ < 1 and is  
V = θa/t p/2 = (1 – ξ)n with 0 < V < 1. With V = (1 – x/δ)n as well as expressed through the devel-
oped penetration depth, the function φN

p (the subscript means normalized) at x = 0:
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Obviously, the function φN
p (0, t) satisfies the heat-equation, but minimizing the second 

term of eq. (20) we get n = 1/(m + 1) and taking into account that φN
p (0, t) should be positive 

we need n > 1/(m + 1) .
On the other hand, thanking into account that for x = 0:

	

( ) ( )2

2

0, 0,d 
d   

T t T th
t t x

∂ ∂
= =

∂ ∂



Hristov, J.: Non-Linear Heat Conduction with Ramped Surface Heating ... 
THERMAL SCIENCE: Year 2020, Vol. 24, Suppl. 1, pp. S377-S389	 S383

and, therefore, from
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Using the expression for δ derived by DIM and equating it to eq. (21):
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For p = 0 we get the condition n =1/(m + 1) established through the normalized pro-
file. Further, for short times we may neglect the time-dependent term in eq. (22) and accept that 
n is a constant established at x = 0. The expression eq. (22) generally states that n should be 
time-dependent. Moreover, the last relationship in eq. (22) clearly state that the determination 
of n needs a non-linear equation be solved since Fn,m,p depends on n. However, this case is be-
yond the scope of this work and we turn on our study to case where the exponent n is constant 
but ensures minimal mean-squared error of approximation over the entire penetration depth.

In addition, for the Goodman's conditions ua(δ, t) = ∂ua(δ, t)/∂x = 0, i. e. for x → δ, 
we get:
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In both cases we have the inequality 1/m > 1/(m + 1) > 1/(m + 1/2), thus the general re-
ciprocal law 1/m is stronger. Following the estimated constrains we may define an area bounded 
by the lines 1/m and 1/(m + 1) which tend to converge at large m. These lines form a Horn-
shaped zone where the exponents of the optimal profile should lie down when the function  
nopt = f(m) is plotted. This behaviour was established in [11] when the case for p = 0 was solved. 
Hereafter, we will refer to it as to the reciprocal law or the H-rule and will see do the optimal 
exponents relevant to the problem at issue satisfy it.

Optimal exponents

In the Zener's co-ordinate [16] the profile:
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Then, the residual function reads:
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where:
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Now, using the expression for δ2:
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is time-independent. Therefore, the residual function decays in time and the optimization 
problem refers to a minimum of [ω(ξ, t)/F2

n,m,p] with respect to n for given m and p. When  
p = 0 (fixed temperature boundary condition), for instance, the function ω(ξ, t) is time-inde-
pendent. If we consider, that the maximum value of the residual function occurs at t = 0, then 
setting t = 0 in ω(ξ, t) we get
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The integration from 0 to 1 yields:
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a results which becomes zero for m = 0, which is unacceptable. Therefore, we have to evaluate 
the squared-error function defined:
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The integration in eq. (26) yields:
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Assessment of E(n, m, p) by asymptotes and optimal exponents 

Short times 
Only one term of eq. (27) are time-independent and if we will look for the case  

t → 0 then one obtain n = 2/(m + 1) and varying m > 1, all exponents will satisfy the reciprocal 
law resulting in convex profiles. In fact, this approach coincides with the early technique of 
Myers [15, 16]. 
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Alternative approach with restrictions imposed of vertical asymptotes 

If we set t = 1 then, then all terms in eq. (27) will be with equal weights with giv-
en p and m, E(n, m, p) is a function only of n. For the optimization of E(n, m, p) with the 
imposed constraints on the exponent n we have to define the area where the minima and 
consequently the optimal values of the exponent n should be searcher for. The error func-
tion eq. (27) is a rational function E(n, m, p) = P(n)/Q(n) where the nominator P(n) has one 
order higher than the denominator Q(n) and, therefore, it has a slant asymptote allowing 
representing it as E(n, m, p) = kx + b + R(n)/Q(n). More over the denominator Q(n) defines 
the vertical asymptotes (for n > 0): n = 0.5, n = 1.5/(m + 1), n = 1/(m + 2). We will avoid 
any cumbersome calculations and will give a particular example. For a linear ramp (p = 2) 
and m = 1, we have:

( )

( )( )( )( )( ) ( )
8 7 6 5 4 3 2

,1, 2

744 605 4541.1 9937.2 7845.1 2283.8 113.7.17 111 6
2 1 3 2 3 1 4 3 2 1

E n

n n n n n n n n
n n n n n n n

=

− − + − + + − −
=

+ + + − − − (28)

The vertical asymptotes for n > 0 are: n = 1/3, n = 1/2, and n = 3/4. The nominator 
P(n) is of order 8 while the denominator Q(n) is of order 7 and the slant asymptote is defined 
by the line E = –16.178 + 10.33n + R(n)/Q(n). With the constraints n > 1/ (m + 1) = 1/2 and  
n < 1 the value of n should be searched for the branch of E(n, 1, 2) bounded by the vertical 
asymptotes n = 1/2 from the left and n = 3/4 from the right, and beneath by the slant asymptote. 
The minimization (numerical) of the eq. (28) by help of Maple results in an optimal exponent  
n ≈ 0. 722 providing E(n, 1, 2) ≈ 0.5625. This optimal exponent is bounded by the constraints 
corresponding to the reciprocal law, namely: 0.5 = 1/(m + 1) < 0.722 < 1/m = 1. In addition, the 
function E(n, 1, 2) has a local minimum of about 4.373 ⋅ 10–3 for n ≈ 1.391 in the area bounded 
from the left by the vertical asymptote n = 1/3 and beneath the slant asymptote. However, this 
exponent provides a concave profile albeit it satisfies the constraints of the reciprocal law. Sim-
ilarly, for the case of a linear ramp (p = 2) and higher values of m the optimal exponents np,m are:  
n2,2 ≈ 0.656, n2,3 ≈ 0.553, n2,4 ≈ 0.4920, n2,5 ≈ 0.3290.

Numerical experiments with approximate solutions

Temperature profiles with stipulated exponents 

 As a first step of demonstration of the developed approximate solution plots with 
stipulated exponents defined by the rule are shown in fig. 1 . As commented earlier the profiles 
are convex for n < 1 an cross the abscissa in points definition the position of the penetration 
front. In case when the profiles are presented through the variable 0 < X < 1 all of them end at 
X = 1 but with increase in the value of m they become with more steeper fronts. This behaviour 
is characteristic for the degenerate diffusion, especially slow diffusion. 

Time evolution of the front

The second interesting question is about the behaviour of the front, especially its time 
evolution. It is clear that for m = 0 (normal, Gaussian Diffusion) we have δ ≡ t 1/2. However, 
for various values of m and different ramping parameter p the behaviour will change. It is pos-
sible to see this behaviour from the plots in fig. 2. In all cases for small times, precisely when  
0 < t < 1the plots are below the Gaussian line and therefore, the exhibited behaviour is sub-
diffusive. However, for t > 1 there is superdiffusion in all cases. It is clearly demonstrated 
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that the increase in the values of m make the growth of the penetration depths slower, as it 
follows from previous results where it was shown that the increase in m reduces the penetra-
tion depth.

To clarify this behavior let us see what is the rate of the front. From the functional 
relation about δ(t):

2 2
4 4d 2

d 4

pm pmpmt t
t
δδ

+ −
+ ≡ ⇒ ≡  

 
(29)

To have a positive growing rate dδ/dt > 0 we need pm – 2 > 0 which requires  
p > m/2. This condition is satisfied, since at the very beginning the condition for slow diffusion 
is m > 1. Thus, for 1 < m < 2 this requirement is satisfied,but when m > 2, the general condition 
imposed by eq. (3) cannot be obeyed. Despite this, we may consider the conditions in eq. (3) 
about the values of p as non-mandatory. In this case, since the condition m > 1 comes from the 
model physics, then the ramp process is of secondary importance and different front rates can 
be obtained depending on the value of m and the value of the ramping parameter p. In general, 
higher values of the non-linear parameter m, the higher value of p in order to obtain positive 
rate of the front are required.
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Figure 1. The DIM solutions (normalized profiles ua = θa/θs with stipulated exponents  
following the rule 1/(m + 1) for various values of the ramping parameter p; the upper plots are 
presented as functions of the similarity variable η as argument, while the lower plots are  
developed with X as independent variable
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Temperature profiles with optimal exponents 

The temperature profiles of the optimized solutions are shown in fig. 3 . It is clear that 
the generative behaviour of the model equation dominates over the form of the ramping func-
tions. In general, the increase in non-linearity exponent m results in shorter penetration depth 
and steeper fronts of the solutions. Actually, it is hard to detect any effect of the parameter p of 
the ramping surface departure, and the profiles are practically indistinguishable,with respect to 
the values of the ramping rate parameter p, especially when they are presented by the dimen-
sionless variable 0 < X < 1. It is noteworthy that both parameters p and m form a correction 
factor f(m, p) that sharply increases and reduces the penetration depth with increase either in p or 
in the model degeneracy through m. This effect can be simply explained when numerical factor 
Fn,m,p can be presented as Fn,m,p (DIM)/ f(m, p):

	 ( )( ), ( ) 1 2n mpF DIM n n= + +

as in the numerical factor of the integral-balance (DIM) solution for m = 0 and p = 0. And,  
f(m, p), from eq. (14):

	 ( )
( ) ( ){ }

,

1 1 2

2m p

m p m
f

 + + + =

the plot is shown in fig. 3(d).
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Figure 2. Time evolution of the front δ(t) represented only by its time-dependent part for  
different values δ* = [t (pm + 2)/2]1/2 of the non-linear exponent m and the ramping rate constant p 
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Figure 3. Temperature profiles with optimal exponents (DIM solutions) for various non-linear 
parameters m and different ramping programs of surface heating 

Conclusion

 The work presented analytical solution of a transient heat conduction with a pow-
er-law temperature dependence of the thermal diffusivity with difference ramping surface heat-
ing (surface temperature rise). The solution developed by the approximate integral-balance 
method (double-integration techniques) reveal adequate physical behaviour with sound results 
which can be attributed to the slow diffusion behaviour of the modelling degenerate parabolic 
equation. The increase in the non-linearity of the thermal diffusivity leads to steep fronts of the 
solutions and shorter heated layer in depth of the medium. In general, the rate of ramp rise, has 
no strong effect on the temperature profiles since the non-linearity of the modelling equations 
dominates.
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