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In this paper, we introduced the concept of weak compatible of type (α) and asymptot-
ically regular defined on intuitionistic fuzzy 3-metric space and proved the uniqueness 
and existence the fixed point theorem for five mappings from a complete intuitionistic 
fuzzy 3-metric space into itself under weak compatible of type (α) and asymptotically 
regular. The used definitions and theorem show the practice of our main idea.
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Introduction

Functional analysis science which is divided into two main parts (linear and non-lin-
ear), is a branch of mathematical analysis where it based on the study of vector spaces endowed 
with some kind of limit-related structure (e. g., inner product, norm, topology, etc.) and the 
linear functions defined on these spaces and respecting these structures in a suitable sense. 
Studying the formulation properties of the transformations functions, operators between func-
tion spaces and spaces of functions are considered as the historical roots of this branch of sci-
ence. The importance of this science is clearly showing in studying the integral and differential 
equations [1-10]. 

Zadeh [11] introduced the theory of fuzzy sets and showed successful application 
in many fields. The concept of fuzzy metric spaces in different ways was presented by Kra-
mosil and Michalek [12] and proved fixed point theorems. Park [13] introduced the concept 
of intuitionistic fuzzy metric space by using continuous t-norm and continuous t-conorm. 
Abu-Donia et al. [14] studied the common fixed-point theorems in intuitionistic fuzzy met-
ric space and intuitionistic, (ϕ, φ)-contractive mappings. The definition of 2-metric space was 
described by Gahler [15] and proved some applications. Sharma [16] introduced the con-
cept of fuzzy metric spaces. Mursaleen and Lohani [17] modified the concept of intuitionis-
tic fuzzy metric spaces to intuitionistic fuzzy 2-metric spaces. Saadati and Park [18] defined 
the concept of weak compatible mapping in intuitionistic fuzzy 2-metric spaces. Abu-Donia  
et al. [19] proved some fixed-point theorems in fuzzy 2-metric space under ψ-contractive map-
pings. Chauhan et al. [20] gave the concepts of intuitionistic fuzzy 3-metric spaces. Nigam and 
Pagey [21] defined the concept of asymptotically regular defined on intuitionistic fuzzy 2-met-
ric spaces. Abu-Donia et al. [22] presented fixed-point theorem by using ψ-contraction and  
(ϕ, φ)-contraction mapping in probabilistic 2-metric space.
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In this paper, we establish the concept of asymptotically regular defined on intu-
itionistic fuzzy 3-metric spaces and presented the idea of weak compatible of type (α) and 
proved the common fixed-point theorem in five mappings under some contractive map-
pings.

Definition 1. [23] A binary operation *:[0, 1]4 → [0, 1] is continuous t-norm if * sat-
isfies the following conditions:
i.  * is commutative and associative,
ii. * is continuous,
iii. a1 * 1 = a, for all a ∈ [0, 1], and
iv. a1 * b1* c1* d1 ≤ a2 * b2* c2* d2 whenever a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, d1 ≤ d2, and for all a1, b1, c1,      
d1, a2, b2, c2, d2 ∈ [0, 1].

For example a*b*c*d = min{a, b, c, d}. 
Definition 2. [23] A binary operation ◇:[0, 1]4 → [0, 1] is continuous t-norm if ◇ 

satisfies the following conditions:
 i.  ◇ is commutative and associative,
 ii. ◇ is continuous,

 iii. a ◇ 0 = a, for all a ∈ [0, 1], 
 iv. a1 ◇ b1 ◇ c1 ◇ d1 ≤ a2 ◇ b2 ◇ c2 ◇ d2 whenever a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, d1 ≤ d2 and for all  
a1, b1, c1, d1, a2, b2, c2, d2 ∈ [0, 1]. 

For example a ◇ b ◇ c ◇ d = max{a, b, c, d}. 
Definition 3. [23] Let (X, M, N,*, ◇) is said to be intuitionistic fuzzy 3-metric space if 

X is an arbitrary set, * is continuous t-norm, ◇ is continuous t-conorm, and M, N are intuition-
istic fuzzy sets on X 4 × [0, ∞) → [0, 1] satisfying the conditions:
i. M(x, y, z, w, t) + N(x, y, z, w, t) ≤ 1,
ii. M(x, y, z, w, 0) = 0,
iii. M(x, y, z, w, t) = 1, for all t > 0. Only when at least two of the three simplexes  
(x, y, z, w) degenerate,
iv. M(x, y, z, w, t) = M(x, z, y, w, t) = M(w, z, y, x, t) = M(w, z, x, y, t),
v. M(x, y, z, w, t1 + t2 + t3 + t4) ≥ M(x, y, z, w, t1) * M(x, y, z, w, t2) * M(x, y, z, w, t3)* M(x, y, z, w, t4),
vi. M(x, y, z, w, .):[0, ∞) → [0, 1] is left continuosus,
vii. limt→∞ M(x, y, z, w, t) = 1,
viii. N(x, y, z, w, 0) = 1,
ix. N(x, y, z, w, t) = 0, for all t > 0. Only when at least two of the three simplexes  
(x, y, z, w) degenerate,
x. N(x, y, z, w, t) = N(x, z, y, w, t) = N(w, z, y, x, t) = N(w, z, x, y, t)
xi. N(x, y, z, w, t1 + t2 + t3 + t4) ≤ N(x, y, z, w, t1) ◇ N(x, y, z, w, t2) ◇ N(x, u, z, w, t3) ◇N(u, y, z, w, t4),
xii. N(x, y, z, w,.):[0, ∞) → [0, 1] is right continuosis, and 
xiii. limt→∞ N(x, y, z, w, t) = 0.

For all x, y, z, w, u ∈ X, and t, t1, t2, t3, t4 > 0. The values M(x, y, z, w, t) and  
N(x, y, z, w, t) may be interpreted the degree of nearness and non-nearness that the volume of 
the quadrilateral enlarged (x, y, z, w) concerning t, respectively.

Definition 4. [23] Let (X, M, N,*, ◇) be an intuitionistic fuzzy 3-metric space. Then a 
sequence {xn} in X is said to be convergent to a point x ∈ X for all t > 0, limn→∞ M(xn, x, z, w, t) = 1, and 
limn→∞ N(xn, x, z, w, t) = 0.

Definition 5. [23] Let (X, M, N,*, ◇) be an intuitionistic fuzzy 3-metric space. 
Then a sequence {xn} in X is said to be Cauchy sequence if, for all t > 0 and and p > 0,  
limn→∞ M(xn+p, xn, z, w, t) = 1, and limn→∞ N(xn+p, xn, z, w, t) = 0.
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Definition 6. [23] An intuitionistic fuzzy 3-metric space (X, M, N,*, ◇) is said to be 
complete if and only if every Cauchy sequence is convergent.

Lemma 1. Let (X, M, N,*, ◇) be an intuitionistic fuzzy 3-metric space. Then M and N 
are continuous functions on X 4 × [0, ∞). 

Lemma 2. Let (X, M, N,*, ◇) be an intuitionistic fuzzy 3-metric space. If for all  
x, y, z, w ∈ X, t > 0, and a number k ∈ (0.1) M(x, y, z, w, kt) ≥ M(x, y, z, w, t), and  
N(x, y, z, w, kt) ≤ N(x, y, z, w, t), then x = y, y = z, z = w, w = x, w = y, z = x, and z = y. 

Definition 7. Two self-mapping A and B of an intuitionistic fuzzy 3-metric space 
(X, M, N,*, ◇) are said to be weakly compatible if ABx = BAx when Ax = Bx for some x ∈ X. 

Definition 8. Two self-mapping A and B of an intuitionistic fuzzy 3-metric space  
(X, M, N,*, ◇) are said to be compatible if limn→∞ M(ABxn, BAxn, z, w, t) = 1, and  
limn→∞ N(ABxn, BAxn, z, w, t) = 0 for all z, w ∈ X and t > 0 whenever {xn} is a sequence in X such 
that limn→∞ Axn = limn→∞ Bxn = x for some x ∈ X. 

Definition 9. A mapping A from an intuitionistic fuzzy 3-metric space  
(X, M, N,*, ◇) is said to be sequentially continuous at x if for every sequence {xn} in X,  
limn→∞ M(xn, x, z, w, t) = 1 and limn→∞ N(xn, x, z, w, t) = 0 implies limn→∞ M(Axn, Ax, z, w, t) = 1, and 
limn→∞ N(Axn, Ax, z, w, t) = 0 for all z, w ∈ X, t > 0. 

Definition 10. Let A and B be two mappings from an intuitionistic fuzzy 3-metric 
space (X, M, N,*, ◇) into itself. A sequence {xn} in X is said to be asymptotically (A~B) 
regular if limn→∞ M(Axn, Bxn, z, w, t) = 1, limn→∞ N(Axn, Bxn, z, w, t) = 0 for all z, w ∈ X, t > 0. 

Definition 11. Let A and B be two mappings from an intuitionistic fuzzy 3-met-
ric space (X, M, N,*, ◇) into itself. The mappings A and B are said to be weak com-
patible with type (α) if limn→∞ M(ABxn, BBxn, z, w, t) ≥ limn→∞ M(BAxn, BBxn, z, w, t), and  
limn→∞ N(ABxn, BBxn, z, w, t) ≤ limn→∞ N(BAxn, BBxn, z, w, t) for all z, w ∈ X, t > 0. Whenever {xn} is 
a sequence in X such that limn→∞ Axn = limn→∞Bxn = x for some x ∈ X. 

Lemma 3. Let A and B be weak compatible mappings of type (α) from an intuition-
istic fuzzy 3-metric space (X, M, N,*, ◇) into itself. If limn→∞ Axn = limn→∞Bxn = x for somex  
∈ X. Consequently, we have the following:
 – limn→∞BAxn = Ax if A is sequentially continuous at x, 
 – limn→∞BAxn = Bx if B is sequentially continuous at x, and
 – ABx = BAx, and Ax = Bx if A and B are sequentially continuous at x. 

Main results

Theorem 1. Let (X, M, N,*, ◇) be a complete intuitionistic fuzzy 3-metric space such 
that a * b* c* d = min{a, b, c, d} and a ◇ b ◇ c ◇ d = max{a, b, c, d} for all a, b, c, d ∈ X. Let 
A, B, S, T, and F be mapping into itself satisfying the following conditions:
 –  AB is sequentially continuous,
 – the pair {F, AB} is weak compatible with type (α),
 – there exists a number 

    k ∈ (0, 1) such that M(Fx, Fy, z, w, kt) ≥ M(ABx, Fx, z, w, t) * M(STy, Fy, z, w, t) *1,  
       N(Fx, Fy, z, w, kt) ≤ N(ABx, Fx, z, w, t) ◇ N(STy, Fy, z, w, t) ◇ 0, 
 – There exists an asymptotically (F~AB) regular sequence and asymptotically (F~ST) proper 

sequence,
 – M(x, STx, z, w, t) ≥ M(x, ABx, z, w, t), N(x, STx, z, w, t) ≤ N(x, ABx, z, w, t),  

for all x, z, w ∈ X, t > 0, and 
 – FB = BF, FT = TF, AB = BA, and ST = TS.

Then A, B, S, T, and F have a unique common fixed point in X. 
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Proof. Let {xn} be a sequence in X such that it is an asymptotically (F~AB) regular and 
asymptotically (F~ST) regular. By using (iii) for m, n ∈ N:
 M(Fxn, Fxm, z, w, kt) ≥ M(ABx, Fxn, z, w, t) * M(STxm, Fxm, z, w, t)*1 
 N(Fxn, Fxm, z, w, kt) ≤ N(ABxn, Fxn, z, w, t) ◇ N(STxm, Fxm, z, w, t) ◇ 0

By taking limit m, n → ∞ since asymptotically (F~AB) regular and asymptotically 
(F~ST) regular, we have:
   limm,n→∞ M(ABxn, Fxn, z, w, t) =  lim m, n → ∞M(STxm, Fxm, z, w, t) = 1
   limm,n→∞ N(ABxn, Fxn, z, w, t) =  lim m, n → ∞N(STxm, Fxm, z, w, t) = 0.

Then, we obtain:
 limm,n→∞ M(Fxn, Fxm, z, w, kt) = 1 and limm,n→∞ N(Fxn, Fxm, z, w, kt) = 0,
for all z, w ∈ X and t > 0 . Then {Fxn} is a Cauchy sequence in X. Since (X, M, N,*, ◇) is com-
plete intuitionistic fuzzy 3-metric space, {Fxn} convergent to a point u ∈ X. 
 M(ABxn, u, z, w, t) ≥ M(ABxn, u, z, Fxn, t/4) * M(ABxn, u, Fxn, w, t/4) * 
 * M(ABxn, Fxn, z, w, t/4) * M(Fxn, u, z, w, t/4)
 N(ABxn, u, z, w, t) ≤ N(ABxn, u, z, Fxn, t/4) ◇ N(ABxn, u, Fxn, w, t/4) ◇ 
 ◇ N (ABxn, Fxn, z, w, t/4) ◇ N (Fxn, u, z, w, t/4), 
since {xn} is asymptotically (F~AB) regular, we have: 
limn→∞ M(ABxn, u, z, Fxn, t/4) = limn→∞ M (ABxn, u, Fxn, w, t/4) = limn→∞ M(ABxn, Fxn, z, w, t/4) = 1, 
and 
limn→∞ N(ABxn, u, z, Fxn, t/4) = limn→∞ N (ABxn, u, Fxn, w, t/4) = limn→∞ N (ABxn, Fxn, z, w, t/4) = 0,
also, {xn} convergent to a point u ∈ X. The limn→∞ M (Fxn, u,z, w, t/4) = 1  and  
limn→∞ N (Fxn, u, z, w, t/4) = 0.

Consequently: limn→∞ M(ABxn, u, z, w, t) = 1, limn→∞ N (ABxn, Fxn, u, z, w, t) = 0.
Similarity, we have: limn→∞ M(ABxn, u, z, w, t) = 1, limn→∞ N (ABxn, Fxn, u, z, w, t) = 0.

Since F and AB are a weak compatible mapping of type (α), AB is sequentially continuous by 
using Lemma 3, then we have limn→∞ F(AB)xn = ABu and limn→∞ (AB)2xn = ABu , by using (iii) 
there exist a number k ∈ (0, 1):
 M[F(AB)xn,Fxn, z, w, kt] ≥ M[(AB)2xn, F(AB)xn, z, w, t] * M(STxn, Fxn, z, w, t) * 1 
 N[F(AB)xn,Fxn, z, w, kt] ≤ N[(AB)2xn, F(AB)xn, z, w, t] ◇ N(STxn, Fxn, z, w, t) ◇ 0

By taking limit n → ∞:
 M(ABu, u, z, w, kt) ≥ M(ABu, ABu, z, w, t) * M(u, u, z, w, t) * 1 
 N(ABu, u, z, w, kt) ≤ N(ABu, ABu, z, w, t) ◇ N(u, u, z, w, t) * 0

Consequentially, M(ABu, u, z, w, kt) = 1, N(ABu, u,  z, w, kt) = 0. By using Lemma 2, 
we have ABu = u. Using (v) we have:
 M(u, STu, z, w, kt) ≥ M(u, ABu, z, w, t), and N(u, STu, z, w, kt) ≤ N(u, ABu, z, w, t). 
By non-decreasing of M and by non-increasing of N, we have: 
 M(u, ABu, z, w, t) ≥ M(u, ABu, z, w, kt), and N(u, ABu, z, w, t) ≤ N(u, ABu, z, w, kt).
We obtain: 
 M(u, STu, z, w, kt) ≥ M(u, ABu, z, w, kt), N(u, STu, z, w, kt) ≤ N(u, ABu, z, w, kt), 
we have M(u, ABu, z, w, kt) = 1, N(u, ABu, z, w, kt) = 0.

Consequently, M(u, STu, z, w, kt) = 1, N(u, STu, z, w, kt) = 0. Using Lemma 2, we get 
STu = u. Using (iii) previously, there exist a number k ∈ (0, 1) such that:
 M[F(AB)xn,Fu, z, w, kt] ≥ M[(AB)2xn, F(AB)xn, z, w, t] * M(STu, Fu, z, w, t) * 1 
 N[F(AB)xn,Fu, z, w, kt] ≤ N[(AB)2xn, F(AB)xn, z, w, t] ◇ N(STu, Fu, z, w, t) ◇ 0
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Consequently M(u, Fu, z, w, kt) ≥ M(u, Fu, z, w, t), N(u, Fu, z, w, kt) ≤ N(u, Fu, z, w, t). By 
Lemma 3, we obtain u = Fu. Now, we show that Bu = u. Using (iii, vi), we have:

M(Bu, u, z, w, kt) = M(FBu, Fu, z, w, kt) ≥ M[AB(AB), FAB, z, w, t] * M(STu, Fu, z, w, t) * 1,
N(Bu, u, z, w, kt) = N(FBu, Fu, z, w, kt) ≤ N[AB(AB), FAB, z, w, t] ◇ N(STu, Fu, z, w, t) ◇ 0. 

Consequently M(Bu, Fu, z, w, kt) = 1, N(Bu, Fu, z, w, kt) = 0, we obtain Bu = u. Con-
sequently, Au = u. Now we show that Tu = u. Using (iii, vi) we get:
 M(Tu, u, z, w, kt) = M(FTu, Fu, z, w, kt) = M(Fu, FTu, z, w, kt) ≥ 
 ≥ M[ABu, Fu, z, w, t] * M[ST(Tu), FTu, z, w, t] * 1,
 N(Tu, u, z, w, kt) = N(FTu, Fu, z, w, kt) = N(Fu, FTu, z, w, kt) ≤
 ≤ N[ABu, Fu, z, w, t] ◇ N[ST(Tu), FTu, z, w, t] ◇ 0

Consequently M(Tu, u, z, w, kt) = 1, N(Tu, u, z, w, kt) = 0, then we obtain Tu = u. Con-
sequently, Su = u. 

We have Au = Bu = Tu = Su = Fu = u.
Then is a common fixed point of A, B, S, T, and F. Now we show the uniqueness 

of common fixed points. We suppose and are two common fixed points of the mappings  
A, B, S, T, and F. Using (iii) we have:
 M(Fu, Fv, z, w, kt) ≥ M(ABu, Fu, z, w, t) * M(STv, Fv, z, w, t) * 1 ≥  
 ≥ M(u, u, z, w, t) *M[v, v, z, w, t] * 1 = 1 * 1 * 1 ≥ 1,
 N(Fu, Fv, z, w, kt) ≤ N(ABu, Fu, z, w, t) ◇ N(STv, Fv, z, w, t) ◇ 0 ≤ 
 ≤ N(u, u, z, w, t) ◇ N[v, v, z, w, t] ◇ 0 = 0 ◇ 0 ◇ 0 ≤ 0.

Consequently M(Fu, Fv, z, w, kt) = 1, N(Fu, Fv, z, w, kt) = 0 for all z, v ∈ X, t > 0, 
therefore, Fu =Fv, we have u = v. 

This complete the proof.
Corollary 1. Let (X, M, N, *, ◇) be an entire intuitionistic fuzzy 3-metric space such 

that a * b * c * d = min{a, b, c, d} and a ◇ b ◇ c ◇ d = max{a, b, c, d} for all a, b, c, d ∈ X. Let 
A, B, and T be mappings into itself satisfying the following conditions:
 – A is sequentially continuous,
 – the pair {T, A} is weak compatible with type (α), 
 – there exists a number k ∈ (0, 1) such that 

 M(Tx, Ty, z, w, kt) ≥ M(Ax, Tx, z, w, t) * M(By, Ty, z, w, t) * 1
 N(Tx, Ty, z, w, kt) ≤ N(Ax, Tx, z, w, t) ◇ N(By, Ty, z, w, t) ◇ 0,
 – there exists an asymptotically (T~A) regular sequence and asymptotically (T~B) proper sequence.

Then A, B, and T have a unique common fixed point in X.
If we put S = F = Ix in Theorem 1, we get the proof.
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