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The current study extends the applications of the variational iteration method 
for the analytical solution of fractional contact problems. The problem involves 
Caputo sense while calculating the derivative of fractional order, we apply the 
Penalty function technique to transform it into a system of fractional boundary 
value problems coupled with a known obstacle. The variational iteration method 
is employed to find the series solution of fractional boundary value problem. For 
different values of fractional parameters, residual errors of solutions are plotted to 
make sure the convergence and accuracy of the solution. The reasonably accurate 
results show that one of the highly effective and stable methods for the solution of 
fractional boundary value problem is the method of variational iteration.
Key words: contact problem, obstacle, variational iteration method,  

fractional derivative 

Introduction

The generic concept of obstacle problems occur naturally across many fields, not only 
in mathematics, but also in applications such as electrostatics, control theory, fluid mechanics, 
physics, relaxation processes, etc. Non-etheless, the obstacle problem having the fractional 
derivative occurs in a wide range, such as the study of aberrant diffusion in fluid dynamics, 
viscoelastic theory, neurology, theory of electromagnetic acoustics and the pricing of American 
options [1]. Fractional derivatives are more reliable than integral order derivatives models of 
realistic problems. They can actually be found to be useful techniques to explain some physical 
problems. Many researchers make extensive use of such models to understand their convoluted 
processes and establishing nature issues that are easily understandable for these phenomena 
without losing their underlying hereditary properties [2]. Such notable developments of physics 
and financial mathematics have recently made the obstacle problem very interesting. Wang [3] 
was the first, who utilized the Adomian decomposition method to find the approximate solution 
of Korteweg-de-Vries Burger non-linear fractional equation. Homotopy analysis method was 
used to study fractional order algebraic differential equations by Zurigat et al. [4]. Iomin [5], 
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introduced the idea of fraction (in both time and space) for Schroedinger equation, that seems 
like a strong and proper explanation in the complex inhomogeneous media of diffusive wave 
transportation. Pade approximations are utilized to get the numerical solution of fractional or-
der PDE by Turut and Guzel in [6]. Liu and Hou [7] implemented the generalized differential 
transform technique to find the solution of coupled Burger equation involving the fractional 
derivatives with respect to space and time. A finite difference scheme based on B-spline ap-
proximation is used to solve 1-D hyperbolic equation by Abbas et al. [8]. Many researchers 
used various invariants of transform and iterative methods to find the series solution third order 
fractional PDE, for more details see [9-12].

The spline approximate schemes have many advantages over finite difference tech-
niques as they give continuous, differentiable approximate solution for the spatial co-ordinates 
with significant accuracy. Bashan et al. [13] implemented quantic spline approximation based 
on quadrature scheme to solve Korteweg-de Vries-Burgers equation numerically. Ramadan et 
al. [14] used a non-polynomial quintic spline method for fourth order boundary value problem 
(BVP), while third-order BVP along with odd order obstacle problems are solved by Khan and 
Sultana [15] using non-polynomial quantic spline approximation scheme. Srivastava [16] ana-
lysed the numerical solution of differential equations using polynomial spline approximations 
of various orders. Spline collocation methods based on fifth degree polynomials were carried 
out by Siddiqi and Arshed [17] to solve PDE. Li and Wong [18] employed a parametric quantic 
spline technique for the solution of fractional sub-diffusion problem. 

The framework of variational inequality has become a powerful tool for the qualitative 
analysis of obstacles, boundary, unilateral, contact and optimization problems arising in many 
fields including financial mathematics, physics and engineering sciences. Obstacle problems in-
volving fractional (non-integer) order derivative are modified form of obstacle problems and 
are evolved a significant area for last few decades for many researchers. Fractional calculus, as 
compared to conventional ones, can take into consideration memory and inherent properties of 
various processes and materials. These types of problems arise in chaotic systems, anomalous 
diffusion, ecological and biological models, etc. Stampacchia [19] was the first who introduced 
variational inequality theory for the analysis of PDE with applications in mechanics. Generally, 
to obtain the exact solutions of fractional differential equations is difficult. Hence, computational 
and analytical techniques are therefore, used extensively. Strong and stable computational and 
theoretical techniques are implemented for the solution of fractional differential equations of 
practical importance. Many researchers generalized the integer order differential equation to 
fractional order and employed numerous techniques to find the solution after appropriate modifi-
cation. Hu et al. [20] used Adomian decomposition method, Rani et al. [21] employed homotopy 
perturbation technique and the homotopy analysis method, respectively, Inc [22] implemented 
variational iteration method (VIM), Modanli and Akgul [23] used theta method for investigating 
the fractional differential equations, are some of the examples. Method of variation iteration 
and Laplace transformation based on algorithm were suggested by Martin [24] to solve a frac-
tional differential equation and also discussed the stability of VIM-defined fractional operator. 
A scheme based on weak formulation is implemented for fractional differential equations of 
coupled form by Heidarkhani et al. [25]. Because of its broad applications in science and engi-
neering, several researchers have recently discussed obstacle-based fractional contact problems.

The most important point to note here is that all of these approaches are attempted for the 
solutions of non-linear as well as linear BVP that come with obstacle contact and unilateral prob-
lems, but less consideration is given to non-linear fractional BVP. The current work uses the VIM 
to explore the analytical solution of the BVP correlated with the of fractional obstacles problems. 
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Preliminaries

Here a simple definition is given with respect to the fractional derivative that are used 
in the following sections. The fractional derivatives of order α > 0, see [5] have various defini-
tions. One of the most widely used fractional derivatives definition is attributed to Caputo, for 
example see [26].

Definition

We suppose that n is the smallest integer equal to or greater than α, then the Caputo 
derivative of fractional order α > 0 is given:
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whereas the value of α is a real number and Γ stands for the gamma function.

Problem

Here fractional obstacle BVP of the type is given:
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Having boundary conditions: 
d d|   | | 0
d dx c x a x b
w wu
x x= = == = = (3)

In the aforementioned equation, h(u, x) is the continuous functions, the obstacle func-
tion κ(x) ≤ 0, κ(x) at the end points of the domain, R – given for the set of real numbers and  
2 < α ≤ 3. Such systems arise in the investigation of unilateral, obstacle, free, and moving 
boundary value problems and have significant applications in physical oceanography. Many 
researchers have discussed this problem for α = 3, see [27]. They used the theory of variational 
inequalities to address the uniqueness and existence of the solution of such problems. 

If w(x) = κ(x), the problem (2) reduce:

( )d ,
d

w h w x
x

α

α− = (4)

with the boundary conditions given in (3). The problems of such type (4) are arising in the 
framework of mathematical modelling of the physical phenomena in nuclear science, biophys-
ics, coating and draining flow problems [28].

Applying the penalty function technique, we may write the problem (2) as the follow-
ing equation given:
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w w x x w x x f u x
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Here the penalty function is denoted by n {.}. The penalty function is given:

( ) 0, 0
2, 0

x
χ

µ
χ
<

=  ≥
(6)

We define the κ(x) which is obstacle function:

( )

1

1 2

2

1 ,
2

1 ,
2

1 ,
2

c x m

x m x m

m x d

κ

 − ≤ <

= ≤ <


− ≤ <

(7)

where m1, m2 are real numbers in [c, d]. Using eqs. (4)-(6), we get the beneath system of BVP:

1

1 2

2

( , ) 2 1,
d ( , ),
d ( , ) 2 1, , 1 2

f w x v c x m
v f w x m x m

x f w x v m x d

α

α
α

+ + ≤ <
= ≤ <
 + + ≤ < < ≤

(8)

along with the given boundary conditions in (3). Whereas the continuity conditions of w(x), 
dv/dx, and d2v/dx2 are given at m1 and m2.

Illustration of variational iteration method

The fundamental structure of the procedure is explained by letting the problem of 
obtaining z(χ):

( ) ( ) ( )Lw Nw gχ χ χ+ = (9)

where L and N are the linear and non-linear operators and g(χ) is the source term. The approxi-
mate solution wp+1 of eq. (9), for the given w0, can be found:
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where λ is mentioned as the Lagrange multiplier. Which is derived by applying variation δ on 
either side of the eq. (10) with respect to the variable wp:
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where wp(s)
~

  is a term that is restricted which provides δwp(s)
~

  = 0. The Lagrange multiplier  
λ(s, χ)is discovered by applying the optimal condition, see [29]. This results in a real solution 
z(χ), where:

( ) ( )lim
p pw wχ χ
→∞

= (11)

This approach for obtaining the approximate solution is referred to as VIM. The VIM 
was presented by Inokuti et al. [30]. Moreover, the approach introduced by He [31] has been 
applied in numerous fields of applied and pure science for addressing a wider range of problems 
[32, 33]. For fast convergence of solution, selction of initial approximation is very important in 
VIM, for details, see [34]. 
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Implementation of VIM

Here we present an example of systems that demonstrate the efficiency and implemen-
tation of VIM with fractional boundary values problems of a specific type eq. (8).

Example

Considering, f(w, x) = x, a = 1/4, b = 6/4, c = 3/4, and d =1, the problem eq. (6) is 
re-written:
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with the boundary conditions:

( ) ( )1/4 3/2| 0,  | 0x xw x w x= == = (13)

and with the given continuity conditions of w(x), dv/dx at 3/4 and 1 by applying VIM, the re-
quired functional (12) is developed:
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We determine λ(ζ, x) for the value α = 2. Utilizing the variational principles:

( ) xλ ζ ζ= − (15)

The residual errors are displayed at the end of every solution demonstrate the reliabil-
ity of the Lagrange multiplier for different values in the given domain 1 < α ≤ 2. By the use of 
eqs. (15) and (14), we have:
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We consider the initial approximations: 

( )

0 1

0 2 3

4 5

,

,

1 3,       
4 4
3      1 
4

31        
2

a x a x

w x a x a x

a x a x

 + ≤ ≤

= + ≤ ≤



+ ≤ ≤

(17)

–– Case 1. We consider α = 2.9, in this case. We find the approximate solutions, using eqs. (16) 
and (17): 
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The continuity conditions on w25(x) and using the given boundary conditions eq. (13), 
one can get a system of linear equations. We used MAPLE for solving that system, and get: 

	 0 1 2.4370321959073731565, .1092580489768432832, 0.0136572561221054098a a a= = − =

	 3 4 5.2079641140545480981, .1919246082935821929, 0.06319557416845495844a a a= − = = −

6 7 80.04244041421962704479, 0.02822427381991364109, 0.03422843497199124836a a a= = − =

In fig. 1, the graph shown, is attained by 15th iteration w15(x) of the problem eq. (16).
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Figure 1. Graphical representation of the (a) residual error r25(x) and (b) approximate solution w25(x)

Figure 1 represents the residual error of the problem (12), for α = 2.9. 
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In fig. 1, the graphical representation of residual error (17) has been plotted, which 
show that the residual error is close to zero and very small having the maximum absolute error 
–4.5 × 10–14 at x =1. 
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–– Case 2. In this case we consider α = 2.7, the approximate solutions are found: 
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On using the boundary conditions given in (13) as well as continuity conditions for 
w30(x), one can get a linear system of equations. Solving that system, one obtains:

	 0 1 2.43703219590737315654, .10925804897684328318, 0.013657256122105409813a a a= = − =

	 3 4 5.20796411405454809813, .19192460829358219294, 0.063195574168454958438a a a= − = = −  

	

6 7

8
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=

The graph is obtained by VIM and shown in fig. 2.

The maximum height of 2 is –0.3209968346 × 104. The residual error is given: 
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The graphical representation of residual error eq. (19) is plotted, which can be seen 
in fig. 2. From this figure, it is clear that value of residual error is very small near to zero. The 
maximum error is –3.209968346 × 10–5 at x = 0.26646049779. From the analysis of figs. 1 and 
2, it can be seen that as the derivative order α decreases, the value of the maximum point of the 
solution is also decreases. 

Results and discussions

 Though several techniques have been proposed to solve obstacle problems effi-
ciently, for both accuracy and performance, most of the algorithms discussed in the literature 
still need to be improved. The main objective of this research is to use efficient numeric-ana-
lytic methods that depend on the utilization of the theory of VIM for the solution of fractional 
order BVP associated with obstacle in the Caputo sense. To demonstrate the approximate 
solution of a fractional BVP, a computational analysis has been conducted. From figs. 1, and 
2, we conclude that the order α of fractional derivative depend directly on the height h of 
the maximum point of the solution. It means height of obstacle decreases accordingly. From 
the results, we analyse that proposed procedure is high accurate, simple and effective for the 
solution of fractional order obstacle BVP. The solution behavior is shown quantitatively and 
graphically to approximate certain values of the fractional order α. Non-etheless, the results 
obtained clearly show the full regularity and reliability of the proposed methods, which is a 
well-suited technique for the fractional BVP where order of derivative must lies between 2 
and 3. It is evident that as order of derivative gets closer to 3 we see a strong convergence 
means error reduces significantly. 
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