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This research paper investigates the computational solutions of the resonant schröding-
er’s equation. The modified Khater method and Adomian decomposition method are 
applyied for construct new analytical traveling and semi-analytical wave solutions. 
This model describes the pulse phenomena and studied in non-linear optics. For fur-
ther illustration of our obtained solutions, some distinct types of sketches are given. 
Key words: (3+1) resonant Schrodinger’s equation, modified Khater method, 

Adomian decomposition method, exact and approximate solutions

Introduction

 Marvellous applications in the field of science and engineering have been formulating 
in non-linear PDE with an-integer order or fractional order [1-15]. Thus, many researchers in 
different fields have been focusing on studying the exact travelling and solitary wave solutions. 
These solutions are used to discover more physical, dynamical behaviour, and the nature of 
non-linear problems and explain the different scientific non-linear phenomena. For achieving to 
this fundamental goal, many computational and numerical schemes have been being formulated 
such as the improved and novel expansion method [1-3], extended simplest equation method 
[4-7], first integral method [8, 9], Khater method which is derived by Khater in 2017 [10-13], 
the exp -expansion method [14, 15], the Kudryashov method [16], the Jacobi elliptic functions 
[17, 18], the modified Khater method, [19-22], the generalized Kudryashov method [23, 24], 
the new extended direct algebraic method [25], the functional variable method [26], Adomian 
decomposition method [27-29], and the sub equation method [30].

In this paper, with the availability of symbolic computation packages, the resonant 
non-linear Schrodinger’s equation (RNLS) is investigated by employing the modified Khater 
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method and Adomian decomposition method to construct analytical and semi-analytical solu-
tions [31-41]. The (3+1)-D RNLS model is given:

2
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Employing the following traveling wave transformation:
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Balancing the highest order derivative term and non-linear term in eq. (2), leads:

	
3,  2 3  1N N N′′ ⇒ + = ⇒ = 

Application

 In this part, we apply the modified Khater method and Adomian decomposition meth-
od [42-44] to the (3+1) RNLS equation. 

Modified Khater method

 According to the general solutions suggested by the method, we get the general solu-
tion of eq. (2) in the form:
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where a0, a1, b1, and k are arbitrary constants while f (h) satisfies the auxiliary equation
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Substituting eq. (3) and its derivatives into eq. (2). Collecting all terms of the same 
power of Kf(h). Solving the obtained algebric system by any computer software program, leads:
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According to the value of parameters in Family 1 and 2 the explicit wave solutions of  
eq. (1) are given:
–– for β2 – 4ασ < 0, σ ≠ 0 
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–– for β2 – 4ασ > 0, σ ≠ 0 
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–– for χ = δ = κ and ñ = 0 
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Figure 1. Solitary wave solutions of absolute, real, and imaginary value of eq. (6) in 3-D for  
s1 = 10, s2 = 12, s3 = 13, s4 = 14, s5 = 15, z = 9, y = 8, a0 = 7, δ = 1, ñ = 2, χ = 3
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Figure 2. Solitary wave solutions of absolute, real, and imaginary value of eq. (6) in 2-D for  
s1 = 10, s2 = 12, s3 = 13, s4 = 14, s5 = 15, z = 9, y = 8, a0 = 7, δ = 1, ñ = 2, χ = 3
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Figure 3. Solitary wave solutions of absolute, real, and imaginary value of eq. (6) in contour plot for 
s1 = 10, s2 = 12, s3 = 13, s4 = 14, s5 = 15, z = 9, y = 8, a0 = 7, δ = 1, ñ = 2, χ = 3

According to the value of parameters in Family 2, we get the solitary wave solutions 
of eq. (1):
–– for β2 – 4ασ < 0, σ ≠ 0 
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–– for β2 – 4ασ > 0, σ ≠ 0 

( )2,3 0
2 2 2

4, , ,  1
14 tanh 4
2

ex y x t a ιϕ δ

χ χ δ χ δ χ

 
 
 = −
  + − + − +    

ñ


ñ ñh
(13)

( )2,4 0
2 2 2

4, , , 1
14 o

e
c th 4

2

x y x t a ιϕ δ

χ χ δ χ δ χ

 
 
 = −
  + − + − +    

ñ


ñ ñh
(14)



Khater, M. M. A., et al.: New Optical Explicit Plethora of the Resonant Schrodinger’s ... 
THERMAL SCIENCE: Year 2020, Vol. 24, Suppl. 1, pp. S247-S255	 S251

–– for χ = ñ/2 = κ and δ = 0 
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Figure 4. Solitary wave solutions of absolute, real, and imaginary value of eq. (13) in 3-D for  
s1 = 5, s2 = 6, s3 = 7, s4 = 4, s5 = 10, z = 9, y = 8, a0 = 7, δ = 1, ñ = 2, χ = 3
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Figure 5. Solitary wave solutions of absolute, real, and imaginary value of eq. (13) in 2-D for  
s1 = 5, s2 = 6, s3 = 7, s4 = 4, s5 = 10, z = 9, y = 8, a0 = 7, δ = 1, ñ = 2, χ = 3
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Adomian decomposition method

Applying the Adomian decomposition method on eq. (2) enables rewriting it to be in 
the form:

( ) ( ) ( )   0L R N+ + =  h h h (18)
where (L, R, and N) represent a differential operator, a linear operator and non-linear term, 
respectively.

Using the inverse operator (L–1) on (18), we get:
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Under the following condition [δ = 1, ñ = 2, χ = 3, a0 = 5, r2 = 4] on eq. (6), we get:
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According to eqs. (20)-(23), we get an approximate solution of eq. (2):
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In tab. 1, we discuss the exact and approximate solutions of the (3+1) RNLS equation 
show the value of the absolute error between them. 

Table 1. Shows for increasing the value h, the absolute error 
increases gradually; that means the Adomian decomposition method 
gives more accurate solutions for the values near to zero

Value of h Exact solution Approximate solution Absolute error
0.01 0.00833326 0.00833326 1.73472 ⋅ 10–18

0.02 0.0166661 0.0166661 6.93889 ⋅ 10–18

0.03 0.0249981 0.0249981 2.56739 ⋅ 10–16

0.04 0.0333289 0.0333289 2.5327 ⋅ 10–15

0.05 0.041658 0.041658 1.51129 ⋅ 10–14

0.06 0.049985 0.049985 6.4948 ⋅ 10–14

0.07 0.0583095 0.0583095 2.22801 ⋅ 10–13

0.08 0.0666311 0.0666311 6.4812 ⋅ 10–13

0.09 0.0749494 0.0749494 1.66225 ⋅ 10–12

0.1 0.083264 0.083264 3.85979 ⋅ 10–12
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Figure 7. Exact and approximate wave solutions according to the shown values in tab. 1,  
show the accuracy of the our obtained solutions. 

Conclusion

In this paper, the (3+1) RNLS equation have been investigated via the modified Khater 
method. Some new distinct types of computational solutions have been obtained. These solu-
tions have been used to evaluate the initial and boundary conditions of the model. Furthermore, 
the Adomian decomposition method have been applied for construct the semi-analytical wave 
solutions based on these conditions, Some solitary and approximate solutions are sketched to 
investigate more of the physical properties of this model figs. 1-7. The performance of both 
methods shows useful and powerful in studying many of non-linear partial differential equations. 
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