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Time to failure under normal stress conditions may take a long period of time and 
statistical inferences under this condition is more serious. Then, the experiment is 
loaded under stress higher than normal one which is defined as accelerated life 
tests. This problem in this paper is discussed in the form of partially step-stress 
accelerated life test model when the lifetime of the product has Gompertz lifetime 
distribution and unites are fails under the two independent risks. The maximum 
likelihood method under type-II censoring scheme is used to formulate the point 
and asymptotic confidence interval estimators of model parameters. The two boot-
strap methods are also used to formulate the point and approximate interval es-
timators. The numerical results are adopted in the form of Monte Carlo studying 
to illustrate, assess and compare all of the theoretical results. Finally, results are 
discussed in points to clarify results validity.
Key words: Gompertz distribution, accelerated model, computing risks model, 

estimation with maximum likelihood and bootstrap method 

Introduction 

The modern technology in a lifetime products has presented products with long life-
time and the problem of statistical inferences became more difficultly. Then, the problem of 
obtaining a sufficient information about the life products need to a higher stress level than the 
normal level which known with accelerated lufe tests (ALT), the key reference of ALT are pre-
sented in Nelson [1]. This problem has widely used with different authors see [2, 3]. The ALT 
are defined in different three types described as follows. Constant stress ALT, in which experi-
ment is loaded under constant stress until the final point of the experiments [4]. Step stress ALT, 
in which the experiment is running at different stress levels and changing at prefixed time or 
number [5, 6]. Progressive stress ALT, in which the stress is kept with continuously increasing 
at all experiment steps [7, 8].

In cases which, the experiment is running at the normal and stress levels are defined 
with partially ALT. The type at which the experiment is running firstly at normal stress level and 
after pre-fixed time or number is called partially step-stress ALT. The commonly problem in 
life testing experiment or reliability studying, the units failure under different causes of failure. 
The risk of one causes of failure respected to the other causes is presented as a competing risks 
problem [9, 10]. Under accelerate life test model, this problem and its properties discussed by  
[11, 12]. The collected data obtaining from the experiments under partially step-stress ALT mod-

* Corresponding author, e-mail: gam_amin@yahoo.com



Almarashi, A. M., et al.: Accelerated Competing Risks Model from Gompertz ... 
S166	 THERMAL SCIENCE: Year 2020, Vol. 24, Suppl. 1, pp. S165-S175

el when the units are fails do to only one of two independent causes of failure are used in this 
paper to construct statistical inference for Gompertz lifetime distributions, more detail see [13].

For the type-II competing risks model, suppose n identical and independent units 
are used in a life testing experiments, under given prior number m. The time at which the first 
failure T1;n as well as its caused of failure ρ1 are recorded, say (t1;n, ρ1) is observed. The second 
failure and its caused of failure are recorded, say (t2;n, ρ2) is observed. This operation is con-
tinued until number m of failure and its caused of failure are record, say (tm;n, ρm) is observed, 
where ρi ∈ {1, 2}, i = 1, 2,..., m. The set of data (T1;n, ρ1) < (T2;n, ρ2) <...< (Tm;n, ρm) is denoted to 
type-II competing risk sample.

The likelihood function of observed type-II competing risk sample:

	 t = {(tm;n, ρm), (t2;n, ρ2),..., (tm;n, ρm)}
described
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and ti = ti;n for 0 < t1 < t2 < ...<tm < ∞.
The problem of studying the lifetime model and its properties have considered in sta-

tistical field, more detail see [14]. The models of partially step-stress ALT is applied with type-
II competing risks model to analyzed lifetime Gompertz samples, then through the paper, we 
formulated this models under Gompertz lifetime distribution. Also, parameter estimation with 
maximum likelihood and bootstrap methods are developed. Different tolls are used in numer-
ical computation in the problem of point and interval estimation of model parameters. Under 
the tolls, mean (ME) and mean squared error (MSE) the point estimate is assessed and mean 
interval length (ML) and probability coverage (PC) the intervals estimate are assessed.

Suppose that, at time zero n identical units with normal stress level are putted under 
lifetime testing. The prior integer, m  and change stress time τ are considered. The test is running 
under normal stress level until time, τ, is reached, then the test is loaded to stress level higher 
than normal one and the test is running until m failure is observed. If m or 0 failure is observed 
before the time, τ, is reached the test is running under normal or stress level only, respectively 
and the test is removed at the time, Tm. Let the random integers r and (m – r) is denoted to num-
ber of units fails under normal and stress condition, respectively where 0 ≤ r ≤ m. Let us con-
sider only two causes of failure are available and the failure time and it is caused are recorded. 
Then, the type-II competing risks random sample is described:

	 (T1;n, ρ1) < (T2;n, ρ2) < ...< (Tr;n, ρr) < τ(Tr+1;n, ρr+1)< ... < (Tm;n, ρm)

For the number of units fails under cause j is denoted by mj,  j = 1, 2. Then, we pro-
pose that the PDF of the test unit at two level of stress and two causes of failure satisfies the 
following assumption:
–– The Gompertz lifetime distribution with common shape parameters λ and different another 

shape parameter βj, j = 1, 2 for the random variable Tij and i = 1, 2,..., m. Then, PDF and 
CDF, are given respectively:
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The corresponding SF and FRF of Gompertz life distribution for given some t, are 
given, respectively:
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– The two times of failure Ti and Tij i = 1, 2,..., m, are satisfied Ti = min{Ti1, Ti2} and Tij has 
Gompertz life distribution with parameters λ and βj, j = 1, 2. Hence, Ti distributed with 
Gompertz distribution with (β1 + β2) and λ shape parameters, respectively. For the value of  
ρi = 1, we have number of units fails with cause one equal m1 and for ρi = 2, number of units 
fails with second case equal m2. The consideration that independence of the failure times Ti1 
and Ti2, i = 1,..., m and the two probability P(Ti1 < Ti2) = β2 / (β1 + β2) and P(Ti2 < Ti1) = β1 / (β1 + β2),  
the integer m1 and m2 has binomial distribution with sample size m and probability of succeed 
given by β2 / (β1 + β2) and β1 / (β1 + β2), where m = m1 + m2, respectively. 
–– The model of partially step-stress ALT has describe the total lifetime:
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where X present the life under normal condition. Then, the Gompertz lifetime distribution with 
parameters, λ and βj, j = 1, 2 and accelarted factor θ have the PDF decribed:
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with f1i(t), is presented by eq. (3) and f2i(t) decribed:
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Also, CDF, SF, and HRFs are given:
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The joint likelihood function of observed type-II competing risk sample

	 t = (t1;n, ρ1) < (t2;n, ρ2) < ...< (tr;n, ρr) < τ(tr +1;n, ρr+1)< ... < (tm;n, ρm) 

with r and (m – r) are number of units fails under the normal and accelerated conditions, re-
spectively is given:
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Maximum likelihood estimation

In this section, we discussed the point and asymptotic confidence intervals with MLE 
of model parameters see [15, 16] under consideration that the units test under normal stress lev-
el until the prior fixed time, τ, is reached, then running under stress conditions until prior integer 
m is observed. Also, units are fails under the only two independent causes of failure.

The point estimators

Let t = (t1;n, ρ1) < (t2;n, ρ2) < ...< (tr;n, ρr) < τ(tr +1;n, ρr+1)< ... < (tm;n, ρm) be the observed 
type-II competing risks sample from Gompertz lifetime distribution, then the joint likelihood 
eq. (13) with distribution given by eqs. (3) and (9) is reduced:
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Then the natural logarithm of likelihood eq. (14) is reduced:
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The zero value of partial derivatives of eq. (15) are reduced to likelihood equations 
which is used to present the estimate of the model parameters:
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After replaced β1 and β2 from eqs. (16) and (17), the likelihood eqs. (18) to (19) are 
formulated in the form of two non-linear equations of the parameters λ and θ which need to nu-
merical method such as Netwon Raphson solve. Also, after obtained λ^ and θ^ the MLE estimate 
β^1 and β^2 are obtained from (16) and (17).

The asymptotic confidence intervals

From the log-likelihood function given by (15) by taken the second partially deriva-
tive respected to the model parameters λ, β1, β2, θ and compute the the minus expectation of this 
derivatives, the Fisher information matrix is constructed. In this sense the Fisher information 
matrix has different applications in quantum physics and information theory [17-19]. 

The confidence intervals of parameters is building from Fisher information but, 
practice, the operation of computation the minus expectation second partially derivative 
is more difficult to obtain. Hence, we use the approximate form of information matrix. If,  
Ω(λ, β1, β2, θ) denoted to the Fisher information matrix, the we use to Ω0(λ

^, β^1, β
^
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approximate matrix:
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where ϕ ={λ, β1, β2, θ}. From the propertry of asymptotic normality distribution of λ^, β^1, β
^
2, and 

θ^ with mean (λ, β1, β2, θ) and variance covariance matrix Ω–1
0 (λ

^, β^1, β
^
2, θ

^) :
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And the second partially derivative of log-likelihood function (15) can be easily ob-
tain. Then, the approximate 100(1 – 2α)% confidence intervals of model parameters λ, β1, β2, 
and θ and the variances e1, e2, e3, and e4 computed from diagonal of Ω–1

0 (λ
^, β^1, β

^
2, θ

^) is presented:

1 1 2 2 3 4, , ˆ ˆ ˆ , ˆz e z e z e z eα α α αλ β β θ    (22)

under standard normal probability with tailed given by α.

Bootstrap confidence intervals

The problem of determination, point and interval estimators, bias and variance of an 
estimators and also, calibrate hypothesis tests, bootstrap algorithms presented very important 
method. Practice, the bootstrap algorithms are available in a different types, as given in [20] 
parametric bootstrap algorithm and in [21] non-parametric bootstrap algorithm. In this section, 
we adopted the parametric technique in formulation percentile bootstrap confidence interval 
[22] and bootstrap-t confidence interval [23], the two algorithms are described:
–– The estimators λ^, β^1, β

^
2, and θ^ are calculated under observed type-II competing risk sample 

t = {(t1;n, ρ1), (t2;n, ρ2)...(tr;n, ρr), (tr +1;n, ρr+1),..., (tm;n, ρm) from eqs. (16)-(19).
–– Under the same values of m and τ generate a sample of size m from Gompertz distribution 

with (β^1 + β^2,) and λ^ shape parameters, then the value of r satisfies ti < τ is determined. Under 
consideration the estimate value θ^ and the transformation given by eq. (7) the sample of size 
(m – r) from accelerated Gompertz distribution is obtained. The two integers m1, m2 are gen-
erated from binomial distribution with probability β2 / (β1 + β2) and β1 / (β1 + β2), respectively.

–– Under type-II competing risk bootstrap random sample t* = {t*
1;n, t*

2;n,...,t*
r;n, t*

r +1;n,..., t*
m;n} 

the bootstrap sample estimates λ^*, β^1
*, β^2

*, and θ^.*.
–– Repeated integer S times for Steps 2 and 3.
–– The vector of estimate values φ^* = (λ^*, β^1

*, β^2
*, θ^.*) are putting in an ascending order to be  

φ*[i] = (λ^*[i], β^1
*[i], β^2

*[i], θ^.*[i]) i = 1, 2,..., S.
–– The point bootstrap estimates is calculated:

*[ ]
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Percentile bootstrap confidence intervals:
Let H(X) =P(φ^ * ≤ x) is a CDF of φ^ * , then φ^ *

 Boot = H – 1(x) for given x. Then 100(1 – 2α)% 
bootstrap confidence interval of φ^ * presented:
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Bootstrap-t confidence intervals.
Let us define statistic ξφ
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where φ = (λ, β1, β2, θ). For given H(x) =P(ξφ
* ≤ x) be CDF of ξφ

* 
Hence, for the given value x the estimate φ^* –

Boot-t:

( ) ( )* * * 1
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The100(1 – 2α)% bootstrap-t approximate confidence intervals of φ^* is given:

( ) ( )* *ˆ ˆ, 1Boot t Boot tϕ α ϕ α− − −  (27)

Numerical study

The theoretical results are assessed in this section for different sample size n, dif-
ferent effective sample size m, different effective accelerated time, τ, and different param-
eters vector φ = (λ, β1, β2, θ). The results is reported for two sample of parameters values,  
φ = {(1.5, 0.1, 0.2, 2.0), (0.01, 0.01, 0.015, 2.5)} and the accelerated time τ = {(1.5, 2.0), (30, 70)}, 
respectively. In all results of simulation study the operation depend on 1000 type-II competing 
risks data generated from Gompertz distribution under (β1 + β2) and λ shape parameters. The sam-
ple of size r generated under normal condition satisfies ti < τ and sample of size (m – r) generated 
under transformation (7) for accelerated condition. Number of failures under the two causes m1, 
m2 are generated from binomial distribution with probability β2 / (β1 + β2) and β1 / (β1 + β2), respec-
tively. In our studying, we measure the effect of the change of sample and effective sample sizes 
(n, m), effect time τ and the parameter values.

Hence, we calculate the point MLE and two bootstrap estimates. The results in the 
point estimate are assessed with two tolls ME and MSE and the results are presented in tabs. 1 
and 3. In the case of approximate confidence intervals are measure with ML and PC and results 
are reported in tabs. 2 and 4.

Table 1. The ME and MSE for (λ, β1, β2, θ) = (1.5, 0.1, 0.2, 2.0) 

  MLE  Bootstrap 

(τ, n, m)  λ  β1  β2  θ  λ  β1  β2  θ

(1.5, 30, 15)  ME  1.3977  0.1554  0.2421  2.4124  1.7667  0.1001  0.2521  2.7451 

 MSE  0.5925  0.1069  0.1305  0.7421  0.7337  0.0707  0.1412  0.9542 

(1.5, 30, 25)  ME  1.4375  0.1400  0.1643  2.4116  1.6782  0.0968  0.2550  2.7541 

 MSE  0.4272  0.0813  0.1137  0.6645  0.5091  0.0877  0.1392  0.9427 

(1.5,50,25)  MEs  1.4221  0.1321  0.1702  2.4006  1.6612  0.0977  0.2440  2.7333 

 MSE  0.4152  0.0801  0.1105  0.6547  0.4985  0.0811  0.1102  0.9108 

(1.5, 50, 40)  ME  1.4000  0.1302  0.1812  2.3892  1.6547  0.1241  0.2321  2.6541 

 MSE  0.4018  0.0788  0.0999  0.6208  0.4712  0.0799  0.1009  0.8412 

(1.5, 70, 40)  ME  1.107  0.1284  0.1912  2.3800  1.6511  0.1211  0.2309  2.6331 

 MSE  0.3912  0.0772  0.0987  0.6160  0.4310  0.0780  0.0998  0.8002 

(1.5, 70, 60)  ME  1.4503  0.1203  0.1932  2.2554  1.5821  0.1191  0.2207  2.5332 

 MSE  0.3001  0.0662  0.0907  0.5987  0.4007  0.0643  0.0878  0.7412 

(2.0, 30, 15)  ME  1.4512  0.1545  0.2400  2.3985  1.7521  0.12131  0.2421  2.4215 

 MSE  0.5842  0.0969  0.1274  0.7332  0.7247  0.0677  0.1372  0.9451 

(20, 30, 25)  ME  1.6421  0.1530  0.2338  2.3310  1.6104  0.0968  0.2411  2.4120 

 MSE  0.4145  0.0713  0.1100  0.6561  0.5001  0.0737  0.1300  0.9365 

(2.0, 50, 25)  ME  1.4721  0.1501  0.2302  2.3310  1.6421  0.0992  0.2440  2.4000 
→
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Table 1. Continuation

  MLE  Bootstrap 

(τ, n, m)  λ  β1  β2  θ  λ  β1  β2  θ

 MSE  0.4100  0.0701  0.1078  0.6426  0.4874  0.0721  0.1101  0.9002 

(2.0, 50, 40)  ME  1.4708  0.1208  0.2212  2.2999  1.6327  0.1242  0.2321  2.3215 

 MSE  0.4001  0.0682  0.0981  0.6100  0.4612  0.0654  0.1182  0.8364 

(2.0, 70, 40)  ME  1.4737  0.1207  0.2212  2.2951  1.6330  0.1209  0.2229  2.3541 

 MSE  0.3845  0.0654  0.0812  0.6077  0.4221  0.0632  0.0891  0.7985 

(2.0, 70, 60)  ME  1.4821  0.1211  0.2112  2.2441  1.5991  0.1200  0.2187  2.3251 

 MSE  0.2999  0.0600  0.0765  0.5845  0.3992  0.0581  0.0799  0.7362 

Table 2. ML and PC for (λ, β1, β2, θ ) = (1.5, 0.1, 0.2, 2.0)

  MLE  Bootstrap-p  Bootstrap-t

(τ, n, m)   λ  β1  β2  θ  λ  β1  β2  θ  λ  β1  β2  θ 

 (1.5 ,30, 15)  ML  3.642  0.278  0.481  4.842  3.992  0.299  0.512  5.754  3.245  0.244  0.450  4.252 

 PC  (0.88)  (0.88)  (0.89)  (0.90)  (0.87)  (0.88)  (0.90)  (0.90)  (0.91)  (0.88)  (0.91)  (0.92) 

(1.5, 30, 25)  ML  3.584  0.255  0.445  4.658  3.881  0.290  0.494  5.369  3.131  0.240  0.439  4.211 

 PC  (0.89)  (0.90)  (0.89)  (0.91)  (0.92)  (0.90)  (0.92)  (0.90)  (0.92)  (0.91)  (0.92)  (0.91) 

(1.5, 50, 25)  ML  3.425  0.231  0.425  4.352  3.741  0.271  0.482  5.24  3.120  0.219  0.418  4.215 

 PC  (0.90)  (0.90)  (0.90)  (0.91)  (0.92)  (0.90)  (0.9)  (0.91)  (0.92)  (0.92)  (0.92)  (0.93) 

(1.5, 50, 40)  ML  3.352  0.222  0.419  3.999  3.215  0.258  0.461  4.718  2.999  0.210  0.411  4.090 

 PC  (0.91)  (0.91)  (0.91)  (0.92)  (0.90)  (0.91)  (0.92)  (0.94)  (0.93)  (0.92)  (0.92)  (0.92) 

(1.5, 70, 40)  ML  3.254  0.211  0.399  3.999  3.005  0.248  0.441  4.511  2.942  0.197  0.399  3.999 

 PC  (0.92)  (0.92)  (0.92)  (0.93)  (0.92)  (0.92)  (0.91)  (0.92)  (0.95)  (0.93)  (0.95)  (0.96) 

(1.5, 70, 60)  ML  3.224  0.171  0.387  3.741  2.952  0.232  0.425  4.311  2.824  0.174  0.382  3.842 

 PC  (0.93)  (0.92)  (0.91)  (0.93)  (0.94)  (0.92)  (0.93)  (0.95)  (0.94)  (0.94)  (0.95)  (0.93) 

(2.0, 30, 15)  ML  3.456  0.241  0.452  4.452  3.892  0.282  0.498  5.598  3.214  .2231  .4362  4.231 

 PC  (0.90)  (0.89)  (0.89)  (0.92)  (0.90)  (0.88)  (0.90)  (0.98)  (0.91)  (0.88)  (0.91)  (0.92) 

(2.0, 30, 25)  ML  3.356  0.232  0.430  4.445  3.752  0.271  0.482  5.123  3.110  0.222  0.422  4.001 

 PC  (0.91)  (0.90)  (0.89)  (0.91)  (0.92)  (0.90)  (0.91)  (0.90)  (0.92)  (0.91)  (0.92)  (0.91) 

(2.0, 50, 25)  ML  3.201  0.218  0.414  4.142  3.521  0.260  0.471  5.001  3.009  0.206  0.404  4.000 

 PC  (0.91)  (0.91)  (0.91)  (0.92)  (0.92)  (0.91)  (0.92)  (0.90)  (0.92)  (0.93)  (0.92)  (0.92) 

(2.0, 50, 40)  ML  3.123  0.201  0.400  3.825  3.005  0.240  0.442  4.501  2.809  0.199  0.398  3.990 

 PC  (0.92)  (0.91)  (0.92)  (0.93)  (0.90)  (0.91)  (0.92)  (0.97)  (0.93)  (0.93)  (0.92)  (0.96) 

(2.0, 70, 40)  ML  3.077  0.191  0.390  3.808  2.995  0.231  0.428  4.490  2.798  0.181  0.387  3.901 

 PC  (0.92)  (0.93)  (0.97)  (0.93)  (0.92)  (0.92)  (0.92)  (0.97)  (0.95)  (0.93)  (0.95)  (0.96) 

(2.0, 70, 60)  ML  3.020  0.156  0.377  3.583  2.745  0.218  0.414  4.291  2.651  0.166  0.374  3.600 

 PC  (0.93)  (0.93)  (0.91)  (0.93)  (0.94)  (0.92)  (0.93)  (0.95)  (0.94)  (0.92)  (0.95)  (0.94) 
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Table 3. The ME and MSE for (λ, β1, β2, θ) = (0.01, 0.01, 0.015, 2.5) 
  MLE  Bootstrap 

(τ, n, m)   λ  β1  β2  θ  λ  β1 β2  θ
(30, 30, 15)  ME  0.0135  0.0129  0.0141  5.0153  0.0165  0.0142  0.0151  5.0521 

 MSE  0.0177  0.0187  0.0192  0.9854  0.0212  0.0214  0.0241  0.9982 
(30, 30, 25)  ME  0.0124  0.0118  0.0135  5.0047  0.0145  0.0130  0.0140  5.0221 

 MSE  0.0155  0.0163  0.0171  0.9624  0.0200  0.0201  0.0230  0.9775 
(30, 50, 25)  ME  0.0121  0.0117  0.0132  5.0043  0.0141  0.0124  0.0136  5.0218 

 MSE  0.0150  0.0151  0.0158  0.9611  0.0192  0.0185  0.0219  0.9524 
(30, 50, 40)  ME  0.0119  0.0115  0.0118  4.9025  0.0129  0.0111  0.0118  5.0100 

 MSE  0.0115  0.0121  0.0130  0.9598  0.0140  0.0162  0.0201  0.9408 
(30, 70, 40)  ME  0.0117  0.0112  0.0114  4.9021  0.0125  0.0108  0.0114  4.9901 

 MSE  0.0100  0.0101  0.0111  0.9250  0.0118  0.0140  0.0185  0.9210 
(30, 70, 60)  ME  0.0110  0.0108  0.0102  4.9003  0.0104  0.0101  0.0100  4.9621 

 MSE  0.0092  0.0098  0.0100  0.7541  0.0101  0.0102  0.0141  0.8542 
(70, 30, 15)  ME  0.0129  0.0122  0.0138  4.9148  0.0142  0.0140  0.0145  4.9991 

 MSE  0.0165  0.0177  0.0180  0.9841  0.0201  0.0203  0.0232  0.9971 
(70, 30, 25)  ME  0.0120  0.0119  0.0137  5.1100  0.0138  0.0132  0.0137  5.0215 

 MSE  0.0144  0.0154  0.0162  0.9613  0.0190  0.0192  0.0218  0.9784 
(70, 50, 25)  ME  0.0120  0.0114  0.0127  5.0036  0.0142  0.0117  0.0128  5.0207 

 MSE  0.0141  0.0140  0.0147  0.9602  0.0190  0.0178  0.0211  0.9512 
(20, 50, 40)  ME  0.0120  0.0111  0.0112  4.9022  0.0124  0.0102  0.0111  5.0110 

 MSE  0.0107  0.0109  0.0122  0.9540  0.0129  0.0151  0.0190  0.9390 
(70, 70, 40)  ME  0.0111  0.0111  0.0119  4.9028  0.0124  0.0102  0.0111  4.9890 

 MSE  0.0092  0.0094  0.0100  0.9239  0.0108  0.0129  0.0160  0.9199 
(70, 70, 60)  ME  0.0111  0.0107  0.0110  4.9014  0.0110  0.0102  0.0100  4.9608 

 MSE  0.0081  0.0087  0.0091  0.7500  0.0098  0.0089  0.0136  0.8512 

Table 4. The ML and PC for (λ, β1, β2, θ) = (0.01, 0.01, 0.015, 2.5)
   MLE  Bootstrap-p  Bootstrap-t

(τ, n, m)   λ  β1  β2  θ  λ  β1  β2  θ  λ  β1  β2  θ

(30, 30, 15)  ML  0.122  0.108  0.210  5.841  0.184  0.124  0.233  5.875  0.102  0.100  0.201  5.621 

 PC  (0.90)  (0.89)  (0.89)  (0.90)  (0.88)  (0.89)  (0.88)  (0.88)  (0.91)  (0.89)  (0.90)  (0.92) 

(30, 30, 25)  ML  0.103  0.099  0.129  5.548  0.115  0.110  0.150  5.621  0.098  0.097  0.112  5.500 

 PC  (0.89)  (0.90)  (0.90)  (0.91)  (0.91)  (0.90)  (0.90)  (0.91)  (0.92)  (0.91)  (0.91)  (0.91) 

(30, 50, 25)  ML  0.097  0.098  0.113  5.520  0.103  0.101  0.139  5.613  0.097  0.096  0.101  5.490 

 PC  (0.91)  (0.90)  (0.90)  (0.90)  (0.92)  (0.90)  (0.9)  (0.91)  (0.92)  (0.92)  (0.94)  (0.92) 

(30, 50, 40)  ML  0.088  0.096  0.101  5.501  0.098  0.095  0.122  5.600  0.096  0.094  0.097  5.413 

 PC  (0.92)  (0.92)  (0.91)  (0.92)  (0.91)  (0.91)  (0.92)  (0.94)  (0.93)  (0.96)  (0.92)  (0.94) 

(30, 70, 40)  ML  0.081  0.095  0.098  5.492  0.083  0.080  0.113  5.491  0.094  0.092  0.084  5.390 

 PC  (0.92)  (0.92)  (0.92)  (0.93)  (0.92)  (0.92)  (0.91)  (0.92)  (0.96)  (0.93)  (0.92)  (0.97) 

→
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Table 4. Continuation
   MLE  Bootstrap-p  Bootstrap-t

(τ, n, m)   λ  β1  β2  θ  λ  β1  β2  θ  λ  β1  β2  θ

(30, 70, 60)  ML  0.069  0.094  0.081  5.482  0.075  0.062  0.100  5.460  0.092  0.086  0.071  5.377 

 PC  (0.93)  (0.95)  (0.91)  (0.93)  (0.94)  (0.92)  (0.95)  (0.95)  (0.94)  (0.94)  (0.95)  (0.97) 

(70, 30, 15)  ML  0.118  0.096  0.201  5.833  0.175  0.118  0.225  5.865  0.095  0.099  0.192  5.600 

 PC  (0.89)  (0.88)  (0.89)  (0.90)  (0.87)  (0.89)  (0.90)  (0.90)  (0.91)  (0.89)  (0.91)  (0.94) 

(70, 30, 25)  ML  0.099  0.095  0.122  5.541  0.110  0.102  0.141  5.614  0.091  0.092  0.103  5.480 

 PC  (0.89)  (0.91)  (0.89)  (0.91)  (0.92)  (0.90)  (0.92)  (0.91)  (0.92)  (0.91)  (0.92)  (0.91) 

(70, 50, 25)  ML  0.091  0.0976  0.102  5.508  0.098  0.094  0.122  5.600  0.081  0.094  0.099  5.487 

 PC  (0.90)  (0.90)  (0.90)  (0.91)  (0.92)  (0.90)  (0.9)  (0.91)  (0.95)  (0.92)  (0.92)  (0.93) 

(20, 50, 40)  ML  0.086  0.093  0.097  5.492  0.093  0.091  0.114  5.589  0.091  0.090  0.090  5.400 

 PC  (0.92)  (0.91)  (0.91)  (0.92)  (0.91)  (0.91)  (0.92)  (0.93)  (0.93)  (0.92)  (0.92)  (0.94) 

(70, 70, 40)  ML  0.077  0.091  0.089  5.487  0.079  0.069  0.109  5.482  0.079  0.090  0.079  5.379 

 PC  (0.92)  (0.92)  (0.92)  (0.93)  (0.92)  (0.92)  (0.91)  (0.92)  (0.95)  (0.93)  (0.95)  (0.96) 

(70, 70, 60)  ML  0.068  0.093  0.080  5.478  0.066  0.061  0.095  5.448  0.085  0.078  0.064  5.342 

 PC  (0.90)  (0.92)  (0.91)  (0.93)  (0.94)  (0.92)  (0.93)  (0.95)  (0.95)  (0.94)  (0.95)  (0.95) 

Conclusions 

The problem of ALT is adopted over the product has Gompertz lifetime distribution 
with independent two cause. Some important points are reported form the results of simulation 
study observed from tabs. 1-4. All the results in tabs. 1-4 has shown that, results is more accept-
able. Also, we observe about accelerated time, τ, the results are more acceptable for the large 
value of τ. The results are getting better for increasing values of increasing (m/n). The boot-
strap-t give more accurate results than the MLE and percentile bootstrap methods. The results 
are exactable for different choose of the parameters values:

Nomenclature

F (.)	 – CDF of ti

Fj (.)	 – CDF of tij	
f (.)	 – PDF of ti

fj (.)	 – PDF of tij

Rj (.)	 – relability funtion (RF) of tij

ti	 – ith unit failure time
tij	 – ith unit failure time under cause j

Greek symbols

ρj 	 – The indicator value expresed to cause of 
failure of the ith unit

τ 	 – prior stress time

Acronyms

ALT 	 – accelerated lufe tests
CDF 	– cumulative distribution function
FRF	 – failure rate function
HRF 	– hazard failure rate function
ME	 – mean
MLE 	– maximum likelihood estimate
ML 	 – mean interval length
MSE	 – mean squared error
PC 	 – probability coverage
PDF 	 – probability density function
SF 	 – survival function
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