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In this study, the Jacobi wavelet collocation method is studied to derive a solution 
of the time-fractional Fisher’s equation in Caputo sense. Jacobi wavelets can be 
considered as a generalization of the wavelets since the Gegenbauer, and thus also 
Chebyshev and Legendre polynomials are a special type of the Jacobi polynomials. 
So, more accurate and fast convergence solutions can be possible for some kind 
of problems thanks to Jacobi wavelets. After applying the proposed method to the 
considered equation and discretizing the equation at the collocation points, an 
algebraic equation system is derived and solving the equation system is quite sim-
ple rather than solving a non-linear PDE. The obtained values of our method are 
checked against the other numerical and analytic solution of considered equation 
in the literature and the results are visualized by using graphics and tables so as to 
reveal whether the method is effectiveness or not. The obtained results evince that 
the wavelet method is quite proper because of its simple algorithm, high accuracy 
and less CPU time for solving the considered equation. 
Key words: time-fractional Fisher’s equation, collocation method,  

fractional differential equation, Jacobi wavelet 

Introduction

Many scientists has focused on the fractional calculus which has numerous applica-
tion fields in the many branches of science in the last few decades because the scientists assert 
that the description of properties of different materials and the some processes can be explained 
by fractional derivatives and integrals, so fractional differential or integral equations. Thanks to 
the constantly developing computer technology, it is possible to obtain numerical solutions of 
differential or integral equations with higher accuracy than before. Therefore, researchers are 
trying to obtain more accurate solutions of these equations than in the literature. Sometimes a 
small mistake we neglect can have big implications to end human life in the real world. In the 
literature, there are many proposed method for solving fractional differential equations (FDE) 
like finite difference [1, 2], Adomian decomposition [3, 4] and homotopy perturbation methods 
(HPM) [5, 6]. For more details about fractional calculus, see [7-11]. 

The solution of TFF equation is considered by few authors in the literature [12-15]. 
So we aim to solve TFF equation by using Jacobi wavelet collocation method in the research. 
Zhang et al. [12] solve the TFF equation using the HPM. Zhang et al. [12] also study TFF equa-
tion by local discontinuous Galerkin finite element method in another papers of them. An exact 
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solution of the TFF equation which has a small delay is solved by the residual power series 
method  [13, 14]. The paper [16] aims to investigate the symmetry properties and analytic solu-
tions of the TFF equation by the help of the Lie symmetries. The TFF equation is given [12]:

( ) ( ) ( ) ( ), , , 1 , 0t xxD v x t v x t v x t v x tα σρ κ  = + − =  (1)
subject to the following initial condition: 

( ) ( )0,0v x V x= (2)
and boundary conditions: 

( ) ( ) ( ) ( )1 20, , 1,v t V t v t V t= = (3)
where Dα

t represents the fractional derivative in time, κ – the parameter, the constant ρ denotes 
the diffusivity of population, σ = 1, 2,... and 0 < α < 1. For α = 1, the eq. (1) equals to the ordi-
nary Fisher's equation introduced by Fisher [17] in 1937.

Wavelets have many a variety areas of science and engineering such as mathematics, 
signal processing, etc. Since the last three decades, various types of wavelets has been wide-
ly preferred to solve differential equations (ordinary, partial or fractional differential equations) 
because of its many advantages such as simple algorithm, high accuracy and less CPU time  
[18, 19]. On the other hand, Jacobi wavelets are quitely fresh topic which has been studied over 
the last half decade. In [20], Jacobi wavelets are defined and it is used for solving fractional inte-
gro-differential equations. Zaky et al. [21] studied Jacobi wavelet collocation method based on the 
operational matrix of integration of Jacobi wavelets. A new family of regularized Jacobi wavelets 
is defined in [22]. In this study, the Jacobi wavelet collocation method based on the operational 
matrix of derivatives of Jacobi wavelets is used to solve the fractional-fisher since Jacobi wave-
lets can be considered as a generalization of Gegenbauer (thus also Legendre and Chebyshev 
wavelets). When Jacobi wavelets are compared with these wavelets, one of its big advantages is 
that optimal values of the parameters ε, γ of Jacobi wavelets can be differently selected according 
to the types of the equation. So, getting more accurate and faster convergent solutions can be 
possible. The other one advantage and also the primary advantage of the method we used is that 
the method enables a simple procedure to convert the PDE with fractional derivative (in time or 
spatial) to a algebraic system that can be solved simply by many conventional methods.

Preliminaries

Block pulse functions

A complete set of orthogonal functions formed block pulse functions (BPF) can be 
represented on the interval [0, b) [23]:

( )
11,

0, otherwise
i

i ix b
b x N N

− ≤ <= 


(4)

The fractional integral (in Riemann-Liouville sense) 

The α order fractional integral operator Iα of a function v(t) is given [7]:

( )( ) ( ) ( )

( )

1

0

1 ( ) d ,

, 0

t

t k v k k
I v t

v t

α
α α

α

α

− +

 − ∈Γ= 


=

∫ R
(5)

where Γ(.) is the gamma function. 
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The fractional derivative (in the Caputo sense)

The α order fractional derivative operator Dα
t  of a function v(t) is defined [24]:

( )
( 1)

0

1 1 d ( ) d , 1
( ) ( ) d( )

d ( ) ,
d

t n

n n

t
n

n

v k k n n
n t k kD v t
v k n
k

α
α

α
α

α

− +


 − < ≤
Γ − −

= 


=


∫
(6)

where α, t > 0 and n ∈ N. The useful relation between derivative and integral operator is given:

( )
1

( )

0

( ) ( ) (0 ) , 0, 1
!

n k
k

t
k

tI D v t v t v t n n
k

α α α
−

+

=

= − > − < ≤∑ (7)

Jacobi polynomials

The Jacobi polynomials Jm
(ε,γ)(x) which was introduced by Carl Gustav Jacob Jacobi 

are defined via the following iterative formula for all ε > –1, γ > –1: 

( ) ( )
( ) ( )( )

( )( )
( ) ( )

( )( )( )
( )( )

( ) ( )
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where 
( ) ( )

( ) ( )

,
0

,
1

1
2

2 2

J x

J x x

ε γ

ε γ ε γ ε γ

=

+ + −
= +

(9)

The weight function for Jacobi polynomials is given [22]:

( ) (1 ) (1 )x x xε γω = − + (10)

Wavelets

The families of continuous wavelets are established from scaling and translation of a 
mother (or basic) wavelet ψ(t):

( ) 1/2
, | | ,    , ,    0a b

t bt a a b a
a

ψ ψ− − = ∈ ≠ 
 

R (11)

in which a and b denote parameters of the scaling and translation, respectively. If a, b are 
restricted to a = a0

–k, b = nb0a0
–k, in which k, n ∈ N, and 1 < a0, 0 < b0, the following discrete 

wavelets ψk,n(t) which constitute a basis for L2(R) are derived: 

( ) ( )/2
, 0 0 0

k k
k n t a a t nbψ ψ= − (12)

If a0 = 2 and b0 = 1 are selected, ψk,n(t) forms an orthonormal basis for L2(R):

( ) ( )/2
, 2 2k k

k n t t nψ ψ= − (13)
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The Jacobi wavelets are given [20, 21]:

( ) ( ) ( )
( ) ( )

1
2 , 1

,
,,

2 12 2 1 ,
2 2

0, otherwise
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+
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− + ≤ <= 



(14)

where 
( ) ( ) ( )

( ) ( )

1
, 2 1 1

2 1 ! 1m
m m

h
m m m

ε γ
ε γ ε γ

ε γ ε γ

+ + Γ + + Γ + +
=

+ + + Γ + + + (15)

where k, M ∈ N, n = 1, 2,...,2k, are the number of decomposition levels, m = 0, 1, 2,..., M is the 
degree of the Jacobi polynomials, and Γ – the gamma function. The coefficient:

 
( )

1
2

,

2
k

mh ε γ

+

in eq. (14) is for the normality. If ε = γ in eq. (14), Gegenbauer wavelets are derived. In Ge-
genbauer wavelets, for γ = 0.5, Legendre wavelets are derived and for γ = 0, γ = 1, Chebyshev 
wavelets of first kind and second kind are derived, respectively, γ is the parameter of Gegen-
bauer wavelets.

For the theorem of convergence of the Jacobi polynomials and Jacobi wavelets, please 
see [21, 25, 26]. 

Approximation the functions by wavelets

A function g(x) ∈ L2[0,1] can be written by Jacobi wavelets:

( ) ( )( , )
,

1 0
nm n m

n m

g x g xε γψ
∞ ∞

= =

=∑∑ (16)

where 

 
( ) ( ) ( ),

, d .,., an
n

n
nm n mg g x x

ω ω
ε γψ=

symbolizes the inner product. For simplicity, the series can be truncated as follows:

( )
( )

( ) ( ) ( )
12 1

,
,

01

k M
T

nm n m
mn

g x g x xε γψ
− −

==

= =∑∑ G Ψ (17)

where the superscript T is the transpose of the matrix and G and Ψ(x) are N = 2k–1M matrices: 

 1 1 110 11 1 1 20 21 2 1 2 0 2 1 2 1, , , , , , , , , , , ,k k k

T
M M Mg g g g g g g g g− − −− − −

 = … … … … G

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1
, , , , , , , , ,

10 11 1 1 20 21 2 1 2 0 2 1 2 1
, , , , , , , , , , , ,k k k

T

M M M
x ε γ ε γ ε γ ε γ ε γ ε γ ε γ ε γ ε γψ ψ ψ ψ ψψ ψ ψ− − −− − −

 = … … … … Ψ

The wavelet transform of the function g(x) can be written as more compact representation:

( ) ( ) ( )
1

N

i

T
i ig x g x xψ

=

= =∑ G Ψ (18)
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where the index i can be derived from i = m + M(n–1) + 1 and N = 2k–1M, G = [g1, g2,...,gN]T,  

Ψ(x) = [ψ1, ψ2,..., ψN]T. For i = 1, 2,...,N, the collocation points xi are given: 

( )2 1 , 1,2,
2i
ix i N
N
−

= = … (19)

Substituting the collocation points xi into Ψ(x), we get the Jacobi wavelet matrix  
ΦN×N as:

1 3 2 1, , ,
2 2 2N N

N
N N N×

 −     = …      
      

Ψ Ψ ΨΦ (20)

A function v(x, t) ∈ L2([0, 1]×[0, 1]) can be expanded by Jacobi wavelets:

( ) ( ) ( ) ( )
1 1

( , )
N N

T
ij i j

i j

v x t v x t x tψψ
= =

= =∑∑ VΨ Ψ (21)

where the elements vij of the matrix V can be calculated:

( ) ( )
, ( , ),( ) ( )

n
n

ij i j t x
v x v x t t

ω ω
ψ ψ= (22)

where the ωn is the denotes the weight function for the orthogonality of Jacobi wavelets which 
are given by the formula ωn (x) = ω(2k+1x – 2n + 1). For more details, see [22]. 

Operational matrix of integration

The n-times operational matrix Pn of integration of Ψ(x) can be expressed:

 
0 0

times

... ( )d ...d ( )
t t

n

n

t s s t

−

∫ ∫ P



Ψ Ψ (23)

The fractional integration of the vector Ψ(x) is approximated [27]:

( )( ) ( )I t tα αPΨ Ψ (24)

where P α is named the Jacobi wavelet operational matrix of fractional integration. The P α is 
defined:

1
N N B

α α α −
×≅ =P PP Φ Φ (25)

where P α   B , the BPF operational matrix of integration: 

( )

1 2 1

1 2
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1
0 1

1 1 0 0 1
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0 0 0 1

N
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B N

Y Y Y
Y Y

Y
N

α
α α

−

−

−

 
 … 
 = …

Γ +  
 
 … 

P



    

(26)

where Υk = (k + 1)α+1 – 2k α+1 + (k – 1)α+1 and Φ is the wavelet matrix eq. (20). 

Solution procedure

We consider the fractional-fisher with initial conditions given by eq. (2) and boundary 
conditions by eq. (3). Let’ s assume:
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( ) ( ) ( )
2

2

, Tv x t
x t

t x

α

α

+∂
=

∂ ∂
VΨ Ψ (27)

in which [vij]N×N are unknown matrices which should be determined. Integrating the eq. (27) 
order α times with respect to (w.r.t.) t and substituting the initial condition to it, we get:

( ) ( ) ( )
2

02

,
( )

v x t
x t V x

x
α∂

′′= +
∂

PV ΨΨ T (28)

Integrating the eq. (27) two times w.r.t. x, we get:

( ) ( ) ( ) ( ) ( )2

0 0

, , ,
( )

x x

v x t v x t v x t
x t x

xt t t

α α α

α α α
= =

 ∂ ∂ ∂∂
= + +  

∂∂ ∂ ∂  
P VΨΨ

T
T (29)

Substituting x = 1 to the eq. (29), we have:

( ) ( ) ( ) ( ) ( )2 1 2

0

,
(1)

x

TTv x t V t V t
t

x t t t

α α α

α α α
=

 ∂ ∂ ∂∂
= − − 

∂ ∂ ∂ ∂  
P VΨ Ψ (30)

Substituting the eq. 30 to the eq. 29, we have:

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 12 2,
( ) (1)

T TTv x t V t V t V t
x t x t

t t t t

α α α α

α α α α

 ∂ ∂ ∂ ∂
= + + − − 

∂ ∂ ∂ ∂  
P V P VΨ Ψ ΨΨT (31)

Integrating the eq. (31) order α times w.r.t. t, we derive:

( ) ( ) ( ) ( ) ( ) ( )2 2, ( ) (1) ,
T TT Tv x t x t x t R x tα α= − +P VP P VPΨ ΨΨ Ψ (32)

where

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 2 1 1, 0 0 0R x t V x V t V x V t V V t V = + − + − − +  (33)

Substituting the eqs. (28), (29), and (32) to he eq. (1), and substituting the collocation 
points xi and ti to the new equation, we get an algebraic equation system. After solving the 
system, we find the unknown matrix V. Substituting the matrix V to the eq. (32), we find the 
solution we are looking for. 

Application

Some test examples are considered in order to confirm our theoretical statements 
which are given in the previous section. Numerical computations and simulations of the test 
examples are fulfilled by MAPLE. 

Example 1. Let’s deal with the eq. (1) for α = 1, ρ = 1, κ = 1, and σ = 1. So, we have:

( )
2

2 1v v v v
t x
∂ ∂

= + −
∂ ∂

(34)

where 0 < x < 1 and the initial and boundary conditions are given, respectively v(x, 0) = λ,  
v(0, t) = v(1, t) = (λet)/(1 – λ + λet)2, λ is a constant.

The analytic solution v(x, t) = (λet)/(1 – λ + λet)2 is in the reference [19]. Applying the 
our solution procedure on Section Solution procedure to eq. (34), we get the results in the tab. 1 
and fig. 1. From the results, we deduce that our method is more accurate and faster convergence 
than the Haar wavelet method in [19].
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Table 1. Numerical results for Example 1 at the collocation 
points for λ = 3, k = 2, M = 2, ε = 1, and γ = 3

 x  t  vexact vJ.wawelet |vJ.wawelet – vexact|

 
0.125 

 0.125  2.4291376128774  2.42913761288732 9.92 ⋅10–12 

 0.375  1.8456751718109  1.84567517186078  4.98 ⋅10–11 

 0.625  1.5548253634115  1.55482536339462 1.67 ⋅10–11 

 0.875  1.3848651116036  1.38486511155072 5.28 ⋅10–10

0.375 

 0.125  2.4291376128774  2.42913761304581 1.68 ⋅10–10 

 0.375  1.8456751718109  1.84567517202329 2.12 ⋅10–10 

 0.625  1.5548253634115  1.55482536326964 1.41 ⋅10–10 

 0.875  1.3848651116036  1.38486511144069 1.62 ⋅10–11 

0.625 

 0.125  2.4291376128774  2.42913761280096 7.64 ⋅10–11 

 0.375  1.8456751718109  1.84567517178089 3.00 ⋅10–11 

 0.625  1.5548253634115  1.55482536346320 5.18 ⋅10–12

 0.875  1.3848651116036  1.38486511159793 5.66 ⋅10–11 

0.875 

 0.125  2.4291376128774  2.42913761285192 2.54 ⋅10–11 

 0.375  1.8456751718109  1.84567517180090 1.00 ⋅10–11 

 0.625  1.5548253634115  1.55482536342867  1.72 ⋅10–11

 0.875  1.3848651116036  1.38486511160171 1.88 ⋅10–12 

Example 2. We consider ρ = 1, σ = 1 in fractional-fisher, the equation is reduced:
2

2 (1 )v v v v
t x

α

α κ∂ ∂
= + −

∂ ∂
(35)

where 0 < x <1 and the initial and boundary conditions are given, respectively:

 

( ) ( ) ( )2 2 25 5
66 6 6

1 1 1,0 , 0, , 1,

1 e1 e 1 e
tx t

v x v t v t
κ κκ κ− −

= = =
     
     ++ +          

For α = 1, analytic solution of the equation:

 

( ) 2
5

6 6

1,

1
x t

v x t

e
κ κ−

=
 
 +
 
 

in [19]. For κ = 6, applying the our solution procedure, we get the results in the fig. 2 and  
tabs. 2 and 3. When the tables and figure are analyzed, it is obvious that we obtain pretty better 
results than the results in both [28, 29].
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Table 2. Comparison between our method and the reference [28] for k = 2, M = 2, ε = 1, and γ = 3 

 x  t  Analytic  
solution, vexact 

Wavelet  
solution, vwavelet

Absolute  
error, |vwawelet – vexact|

[28], 
vHPTM

Absolute error [28],
|vHPTM – vexact| 

 
0.3 

 0.10  0.302317425  0.302190142  0.000127283  0.304691131  0.002373706 
 0.11  0.316042418  0.315734505  0.000307913  0.319292625  0.003250207 
 0.12  0.329984205  0.329444603  0.000539602  0.334319781  0.004335576 
 0.13  0.344120184  0.343302388  0.000817796  0.349777090  0.005656906 
 0.14  0.358426914  0.357289416  0.001137500  0.365669045  0.007242131 

0.4 

0.10  0.275603147  0.276089876  0.000486729  0.276611064  0.001007917 
 0.11  0.288830839  0.289218924  0.000388085  0.290266450  0.001435611 
 0.12  0.302317425  0.302545020  0.000227596  0.304302372  0.001984947 
 0.13  0.316042418  0.316052513  0.000010094  0.318718535  0.002676117 
 0.14  0.329984205  0.329725172  0.000259033  0.333514645  0.003530440 

0.5 

 0.10  0.250000000  0.240557428  0.009442570  0.249765515  0.000234485 
 0.11  0.262653582  0.252704058  0.009949520  0.262435106  0.000218475 
 0.12  0.275603147  0.265079052  0.010524100  0.275441031  0.000162116 
 0.13  0.288830839  0.277669150  0.011161700  0.288778885 5.19537 ⋅10–5 
 0.14  0.302317425  0.290460339  0.011857100  0.302444264  0.000126839 

Figure 1. Comparasion between analytic and Jacobi wavelet collocation method for Example 1; 
(a) analytic solution, (b) wavelet solution, (c) both analytic and wavelet solution, and (d) error
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Table 3. Comparison between our method and the reference 
[29] for k = 3, M = 2, t = 0.01, ε = 1, and γ = 1 

x Analytic solution, vexact Wavelet solution, vwavelet Absolute error, |vwawelet – vexact| [29]
0.00  0.262654  0.262655 1.693 ⋅10–6  0.2627

0.25  0.202649  0.201227 1.422 ⋅10–3  0.2027 

0.50  0.151602  0.149684 1.917 ⋅10–3  0.1516 

0.75  0.110099  0.110098 1.697 ⋅10–6  0.1101 

1.00  0.077776  0.077776 9 ⋅10–11  0.0778 
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Figure 2. Comparison between analytic solution and Jacobi wavelet collocation method for Example 2: 
(a) both analytuc and wavelet solution, (b) error

For κ = 6 and different fractional α-values, the solutions of eq. (35) are compared in 
the fig. 3.
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Figure 3. Comparision of solutions for different fractional α order for Example 2;  
(a) υ(x, t) for t = 0.3, k = 2, M = 2, ε = 1, and γ = 3, (b) υ(x, t) for x = 0.3, k = 2,  
M = 2, ε = 1, and γ = 3 
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Conclusion

In the study, a numerical solution of the TFF equation is derived by using Jacobi 
wavelet collocation method. One of advantages of Jacobi wavelets is that optimal values of 
the parameters ε, γ of Jacobi wavelets can be optimally selected according to the types of the 
equation in order to get more accurate and faster convergent solution. Finding the optimal pa-
rameters for a problem is a good topic for another works. Also, the method enables a simple 
procedure to convert a considered equation a algebraic system that we can solve simply. The 
procedure is tested on test examples to evidence the precision and effectiveness of the method. 
The numerical computations are done by using MAPLE software and comparatively shown in 
the tables and figures. The findings reveal that the presented method is extremely effective for 
TFF equation and it has high accuracy and less CPU time because of its simple algorithm. 
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