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In this research article, two standard models of liquid chromatograophy, namely 
the dispersive equilibrium model and the kinetic lumped model are approximated 
numerically. We studied the transport of multi components in a single column of 
chromatography considering non-linear adsorption thermodynamics. The mod-
els are analyzed for standard bi-Langmuir and generalized bi-Langmuir types 
adsorption equilibrium isotherms using Danckwert boundary conditions. Math-
ematically, the model equations form a non-linear system of PDE accounting for 
the phenomena of advection and diffusion, paired with an algebraic equation or 
a differential equation for adsorption isotherm. An extended semi-discrete high 
resolution finite volume scheme is employed to obtain the approximate solutions 
of the governing model equations. The method has second to third order accu-
racy. Several test case studies are conducted to examine the influence of various 
critical parameters on the process performance. The contemplated case stud-
ies incorporate the elution process of liquid chromatography with an increasing 
number of components. In particular, single component, two component, and 
three component mixtures are considered for the assessment of process perfor-
mance. The formulated numerical algorithm provide an efficacious mechanism 
for investigating the retention behavior and the influence of mass transfer kinet-
ics on the shapes of elution profiles.
 Key words: chromatographic models, bi-Langumir adsorption isotherm,  

non-equilibrium transport, finite volume method, mass transfer

Introduction

Chromatography is an efficient and effective technique used in laboratories and in-
dustries to separate and analyze many kinds of complex chemical mixtures. This process of 
separation has been much revolutionized due to the progress in science and technology. Chro-
matography technique can be effectually employed to target sophisticated segregation tasks 
for producing high purity products at the economical production rates. Application areas of 
chromatography include fine chemical, petrochemical, biotechnical, pharmaceutical, forensic 
pathology, and Nucleic acids research, etc. It plays a pivotal part in the realms of forensic test-
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ing, finger printing, food and beverage industry, creating vaccinations, DNA testing, insulin 
purification, plasma fractionation and enzyme purification etc. [1-4]. 

Separation of mixture components through chromatographic methods is based on 
their selective distribution and various affinities between two non-miscible phases, a flowing 
liquid known as the mobile phase and a stationary solid phase which is fixed in the column. 
High performance liquid chromatography apparatus includes a high pressure pump, a column, 
an adsorbent (stationary phase), a solvent (mobile phase), a liquid mixture (sample), a comput-
er, a detector, and storage tanks. In this process, the sample of mixture components is fed at the 
column inlet. The sample components, in contact with the stationary phase, are transported by 
the mobile phase throughout the column. They interact distinctly with the stationary phase and 
thus, migrate through the chromatographic system at different speeds and elute out from the 
column at different times [3, 4]. 

A number of dynamical models, taking into consideration diverse levels of complexities, 
were introduced within literary texts to simulate the over all performance of chromatographic proce-
dures. The frequently considered mass balance chromatographic models are the general rate model, 
the non-equilibrium kinetic lump model (KLM) and the dispersive equilibrium model (DEM), [1-4]. 
The physiochemical transport process and the interactions that take place during chromatograph-
ic operation are mechanistically represented by a systems of PDE. This system is usually paired 
along some algebraic equations or differential equations for adsorption isotherm. The linearity and 
non-linearity of these models depend on the adsorption isotherms associated with them. This article 
deals with the non-linear DEM and KLM of chromatography considering bi-Langmuir sorption 
isotherms. The analytical solutions of these models are only possible for linear adsorption isotherms 
which generate decoupled system of equations. As a result, efficient and accurate numerical approx-
imations are needed for predicting dynamical mechanism inside the column [3, 5-7]. Generally, 
three well known classes of numerical methods have been proposed and applied in the literature for 
the solution of chromatographic models. The non-oscillatory finite difference methods like TVB 
(total variation bounded), TVD (total variation diminishing), ENO (essentially non-oscillatory), and 
WENO (weighted essentially non-oscillatory), flux limiting finite volume method (FVM), and the 
discontinuous Galerkin finite element method (DG-FEM) are among the few numerical methods 
with the ability of resolving discontinuities in the solution profile [3, 5-12]. The FVM is an attractive 
and efficient method that has been widely used to approximate different chromatographic models  
[5, 6, 13, 14]. The main advantage of the FVM is that the spatial discretization is carried out directly 
in the physical space. The method is capable to compute weak solutions of the governing equations 
and narrow peaks of the elution profiles correctly. Moreover, it has the ability to accurately over-
come numerical oscillations. The schemes accuracy can be upgraded by introducing high order 
interpolating polynomials in the solution elements [15-17]. 

This study extends and generalizes the previous studies of our research group for 
non-linear DEM and KLM to the case of bi-Langmuir isotherm [6, 8]. The high resolution 
finite volume method (HR-FVM) of Koren is extended and utilized for the solutions of govern-
ing model equations [12]. The scheme approximates the solution with an accuracy of second 
to third-order [6, 7]. The spurious oscillations in the solution profiles due to the presence of 
discontinuities and strong shock waves are resolved numerically by utilizing the flux-limiting 
functions [1, 12]. A second to third order accurate Runge-Kutta (RK) method is applied to solve 
the resulting system of ODE [18]. Various test problems of single and multi-components elu-
tion are examined with a broad range of thermodynamic and kinetic parameters to demonstrate 
influences of isotherms on the concentration profiles. 
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The non-linear kinetic lump model 

In this section, a multi-components non-linear 1-D KLM, is considered to study the 
effects of band broadening on chromatographic separation process. The KLM is a simple model 
for the description of mass transfer kinetics inside the chromatographic column. It achieves 
the mass balances by introducing a kinetic equation that describes the rate of variation of the 
averaged solute concentration in the stationary phase by assuming a linear driving force. This 
driving force commenced from the deviation from equilibrium concentration. The model lumps 
the contributions of external and internal resistances of mass transport into coefficient of mass 
transfer. The model assumes that the bed is isothermal and homogeneously packed. It include 
two fundamental kinetic variables, the coefficient of mass transfer, km, and the coefficient of axi-
al dispersion, Dz, j. With these presumptions, the 1-D balance equations of mass for the transport 
of Nc species in the mobile phase can be written:

2 *
m,

z, 2

( )
= , for = 1,2,...j j j j j j

j c
u u u k q q

v D j N
t z z

∂ ∂ ∂ −
+ −

∂ ∂ ∂ 
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where Nc is the number of species in the sample of mixture. For each component j, uj(z, t) 
symbolizes the solute concentration in the mobile phase, the symbol qj(z, t) is the solute con-
centration in the stationary phase, q*

j – the stationary phase concentration in equilibrium, v – the 
interstitial velocity of mobile phase, Dz,j – coefficient of axial dispersion, external porosity of 
column packing is represented by ϵ, km,j – the rate coefficient of mass transfer, and while t and z 
are the time and axial co-ordinates, respectively. 

The KLM, assumes slow mass transfer kinetics whereas the adsorption desorption 
kinetics is infinitely fast. Therefore, in addition the aforementioned equation, the associated 
balance equation for the concentrations of mixture component in the solid particles are also 
required to complete the model and can be written in the form of kinetic equation:
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The equilibrium adsorption isotherm defines an equilibrium relation among the mix-
ture components concentration in the mobile and stationary phases. For modelling and simula-
tion of the chromatographic separation process, it is essential to represent experimentally deter-
mined adsorption equilibrium data by suitable mathematical equations. A number of different 
adsorption isotherm models have been developed in the literature which are classified as linear, 
Langmuir, BET, and Freundlich isotherms etc. [3, 4, 19]. Here, we consider the non-linear 
bi-Langmuir isotherm. This isotherm was derived theoretically by assuming that the surface of 
adsorbent is covered by two completely independent group of adsorption sites [20-22]. For a 
mixture of Nc components, the competitive bi-Langmuir isotherm is expressed:
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where jth component Henry’s coefficient is denoted by aj, bj quantizes the extent of non-linearity 
associated with the isotherm, and the symbol pj could have negative or positive signs to indicate 
the anti-Langmuir behavior and the Langmuir behavior of adsorption isotherm in the compo-
nents of a mixture. In applications, each mixture component behaves like a Langmuir isotherm 
if the term pj has a positive sign, other wise it is an anti-Langmuir type [23, 24]. Moreover, the 
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subscripts I and II refer to the adsorption sites I and II, respectively. The following non-dimen-
sional quantities are proposed to facilitate the study:

m,
z, j

z,
= , = , Pe = , = j

j
j

k Lz vt Lvx
L L D v

τ κ (4)

where L is the column length and Pez,j – the dimensionless Peclet numbers. Substituting the 
aforementioned dimensionless quantities in the model eqs. (1) and (2), we get:
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In order to close the model equations eqs. (5) and (6), appropriate initial conditions as 
well as the boundary conditions at the left end and at the right end of the column, respectively, 
must be imposed. We consider an initially equilibrated column:

init *,init( , = 0) = , ( , = 0) = , = 1,2,3,.....j j j j cu x u q x q j Nτ τ (7)

In this study, we consider rectangular injections and the conventional Danckwerts 
boundary conditions at the left end of the colum [25]. These boundary conditions are stated:
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These inlet boundary conditions collaborate with Neumann condition at the right end 
of column:

=1

= 0j

x

u
x

∂

∂
(9)

where the jth component injected concentration is denoted by the symbol uj
inj, the dimensionless 

time of injection is denoted by τ inj.  Moreover, the injection becomes continuous when τ inj → ∞ 
or when the simulation time is less than the injection time τ inj. 

The non-linear dispersive equilibrium model 

The DEM, which is the most simple one among the chromatographic models, assumes 
that there is permanent equilibrium between the mobile and the stationary phases. Moreover, 
in DEM, the axial dispersion and all mass transfer resistances because of non-equilibrium iso-
therms are accumulated in an apparent dispersion coefficient. Under these assumptions, Dz in 
eq. (1) is replaced by a new variable Dapp, j > Dz. Thus, for instantaneous mass transfer rate i.e.  
k → ∞, eqs. (1) and (2) can be combined together to obtain the DEM. In dimensionless form,the 
balance equations of mass, for DEM:

* 2

2
z,

1= , for = 1,2,...
Pe

j j j j
c

j

u q u u
j N

x xτ τ
∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂

F (10)

where F = (1 – ϵ)/ϵ symbolizes phase ratio. Equation (10) assumes the same initial and bound-
ary conditions presented in eqs. (7)-(9). 
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Numerical method

A number of numerical techniques have been proposed and applied in the literary 
text for the estimation of the chromatographic models [3-6]. In this section, a semi-discrete  
HR-FVM [6, 17] is utilized for the solution the 1-D KLM. The method is easily implementable, 
compact and simple. It has an accuracy of second to third order in the space variable [8]. The 
resultant ODE system is approximated numerically by using a general ODE solver available 
in the text. The extensive analysis on the accuracy and efficacy of our proposed method has 
already been done analytically and numerically in the previous articles of our research group 
[6, 7]. In addition, the method is capable of resolving sharp peaks and discontinuous fronts 
in the solutions accurately. For the sake of simplicity, we consider a single solute 1-D KLM 
for the derivation of our proposed numerical method. The method could be easily extended 
to multi-component combinations in the sample mixture. In the considered single component 
case, i.e. for u1 := u and Nc = 1, eqs. (5) and (6) becomes: 
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where the numerical solution of the PDE in eq. (11) utilizes the HR-FVM, whereas the ODE 
given in eq. (12) is approximated numerically by a standard ODE solver i.e. (ODE23). 

Discretization of computational domain: For the implementation of proposed HR-
FVM to eq. (11), the discretization of the computational domain is the initial step. Here, we 
considered a uniform discretization of the computational domain [0, 1] to avoid intricacy. The 
mesh intervals width is constant and represented by Δx. Let Nx be the large integer representing 
the number of grid point, the co-ordinate x1–1/2 denotes the mid point for each j ∈ 1,...Nx+1. The 
mesh point xj in the interval Ωj ≡ [x1–1/2, x1+1/2] are covered by the cell for 1 ≤ j ≤ Nx:
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Cell averages: For each cell, the average values of the cell nj(τ) are defined as: 
1= ( ) = ( , )dj j

j
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x x
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ν ν τ ν τ
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where n      ∈ {u, q, q*}. Until now, we have discretized the computational domain and assigned the 
corresponding initial data set at τ = 0 to each mesh interval.

Integral form of KLM: Assuming that the cell averages  nj
n+1 are provided at the time 

level τ n. Then, we can easily find cell averages nj
n+1 at the next level of time i.e. τ n+1. Integrating 

eqs. (11) and (12) over Ωj yields:
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The first order derivatives in eq. (16) can be estimated:
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Various numerical schemes can be used to calculate the convective fluxes uj ±1/2 at 
the cell interface. 

First order numerical method: In this method, the values of concentration are approx-
imated at the cell interfaces in eq. (16) by utilizing back-ward difference equation. The approx-
imation for concentration can be expressed:

1/2 1 1/2= , =j j j ju u u u+ − − (19)

The aforementioned approximations generate a first order accurate method.
The HR-FVM of Koren: Here, the concentration values at the interface of a cell uj+1/2 

are approximated by the following flux-limiting equations [17]:
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represent the ratio between successive concentration gradients. Further, to avoid division by 
zero we consider γ = 10–10. The limiting function ζ in eq. (20) can be defined as [17, 26]:
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Analogously, the concentration uj–1/2 could be computed by changing the index j with 
the index j – 1. 

Other schemes for flux limiting: Different flux limiting methods are accessible from 
literary material that assume different flux-limiting function [16, 27, 28]. In these schemes, 
fluxes at the right cell boundary, Ωj, are expressed:
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Likewise, we can evaluate the left cell boundary fluxes. Here, βj+1/2 can be defined:
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Some well-known flux limiting functions, used in our test problems, are presented 
in tab. 1. The concentration profiles for specific case studies will be analyzed using these flux 
limiters . 

The Stratagem at boundaries of cells: The flux-limiting approximations given by  
eqs. (20)-(23) cannot be applied to the boundary element of the cells. Therefore, the first-order 
backward method is employed to compute cell-interface concentration in the boundary cells. 
The fluxes at the interfaces of interior cells can be computed by aforementioned second-order 
accurate HR-FVM. 
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The ODE-solver: A standard ODE solver is utilized for the solution of the ODE sys-
tem in eqs. (16) and (17). Further, the mathematical software MATLAB is utilized to program 
the numerical scheme and the built-in MATLAB routine ODE (23) is utilized to obtain the 
solution for the resultant ODE system. 

Discusion on numerical test problems

Here, the presented HR-FVM is applied to simulate different chromatographic elu-
tions. In the numerical test cases, chromatographic elutions are considered for 
–– single component 1-D DEM and 1-D KLM, 
–– two components 1D KLM, and 
–– three components 1D LKM, respectively. 

For the sake of simplicity, the axial dispersion coefficients Dz,j = Dz and the mass 
transfer coefficients km, j = km, for j = 1, 2,... Nc, are supposed to be identical in all components. 
However, for practical applications the current model equations allow different values for these 
kinetic parameters for each component. 

The single component elution

At the current subsection, few test cases are discussed for non-linear single compo-
nent elution. We analyze the single component 1-D DEM given by eq. (10) and 1-D KLM given 
by eqs. (11) and (12) for standard bi-Langmuir non-linear isotherm:

	 1,I 1,II*
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1 1
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with pj = 1 in eq. (3). Both continuous (left plots) and pulse (right plots) injections are taken into 
account. The Dankwerts boundary conditions given in eqs. (8) and (9) are employed. Table 2 
reflect the standard parameters utilized in this case study. 

Table 2. Standard parameters utilized in single-component elution
 Parameters L [cm]  ϵ [–] v [cmmin–1] Dz [cm2min–1] tinj [min] tmax [min]

Values 1 0.4  0.1  0.0001  2  60
 Parameters uinit [gl–1] uinj [gl–1] a1,I [–] a1,II [–] b1,I [–] b1,II [–]

Values  0  10  0.5  1.0  0.05 0.1

Table 1. The Flux limiting function used in [23]
 Flux-limiter  Formula 
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Effects of injected concentration: Figures 1 displays the effects of finite-width injected 
concentrations. Here, four distinct injected volumes, such as uinj = 1 g/l, uinj = 4 g/l, uinj = 7 g/l, 
and uinj = 10 g/l are taken into consideration in an initially empty column i.e. uinit = 0 g/l. The 
sample pulse is infused into the column for tinj = 12 minutes. The plots reveals that the peak 
heights start improving by increasing the volume of feeded concentration. It depicted the well 
known fact that the band width is proportional to the volume of injected sample. The concen-
tration profiles for DEM have sharp and narrow peaks representing equilibrium, where as the 
profiles have broader fronts for the KLM for the considered small value of dimension less rate 
coefficient of mass k = 1 per minute. It could be observed from these plots that the column 
with-holding time is decreased with the rising value of injected concentration. The self sharp-
ening effects of adsorption fronts becomes discernible for both models. 

Figure 1. Effects of injected concentration uinj for non-linear single component elution;  
(a) and (b) for DEM, and (c) and (d) for KLM with Danckwert boundary conditions 

 
Effects of velocity: Figures 2(a) and 2(b) compares the concentration profiles for DEM 

and figs. 2(c) and 2(d) for KLM, to study the impact of flow-rate on retention time. Again the 
profiles are plotted for both continuous and pulse injections. Four different flow rates v = 0.1 cm  
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per minute, v = 0.15 cm per minute, v = 0.2 cm per minute, and v = 0.25 cm per minute are 
considered for the same value of tinj = 2 minutes. Notably, the peak height with KLM is smaller 
than the DEM, becasue of delay in adsorption process incorporated in the model. It has also 
been observed that the column with holding time significantly reduces with the increase in the 
interstitial velocity. Moreover, the profiles become sharp with the dominant effects of consid-
ered adsorption for higher value of velocity and vice versa. 

Figure 2. Effects of varying velocity for non-linear single component elution;  
(a) and (b) for EDM, and (c) and (d) for LKM with Danckwert boundary conditions 

Effects of mass transfer coefficient: Figure 3 exhibits the influence of mass transfer 
coefficient k on 1-D KLM. The characteristic effects of non-linear isotherm (bi-Langmuir) are 
clearly evident from this figure. The profile is diffusive and broad for small value of and produc-
es sharp corner for larger value of k = 1 per minute, k = 100 per minute. For k = 100 per minute 
the solution of KLM reduces to that of DEM as depicted in fig. 4. On the other hand, for small 
value of k per minute, the solution of KLM largely differs from the condition of equilibrium and 
hence, from the solution of DEM. 
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Relative error for KLM: Here, the single component KLM, c.f. eqs. (1) and (2), to-
gether with the bi-Langmuir non-linear isotherm:

	

1,I 1,II*

1,I 1,II
( ) =

1 1
a u a u

q u
b u b u

+
+ +

with pj = 1 in eq. (3) is considered to compute relative errors. The standard parameters used 
in this problem are displayed in tab. 2. However, the experimental order of convergence and 
the accuracy of the method has already been computed in the previous articles by our research 
group [7, 8]. In the absence of analytical solution for the considered non-linear PDE, the solu-
tion of the flux-limiting Koren method at 3000 grid points is taken as the reference solution. The 
numerical solutions for 100 computational grid points at the column outlet are compared with 
the reference solution for k = 1 per minute and k = 1 per minute as shown in fig. 4.

 
Figure 3. Effect of mass transfer coefficient k [per minute] on non-linear  
single component elution; (a) k = 1 and (b) k = 100  

 
Figure 4. Comparison of scheme for non-linear single component elution;  
(a) k = 1 [per minute] and (b) k = 100 [per minute] 
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The relative error in time at the outlet of column, x = 1,  can be calculated:
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where
	 := ( = 1, )n n

R RU U x τ

represents the reference solution at time τn and U nR(x = 1, τ) is the corresponding numerical 
solution. The NT is the total number of time steps and Δτ is the size of time step. Table 3 
exhibits the relative error and experimental order of convergence (EOC) calculated by using 
Koren method for various grid points by assuming Dz as a variable. The results in tab. 3 depicts 
that the suggested flux limiting Koren scheme is second order acurate. The relative-errors and 
CPU run-times of different numerical schemes is computed in tab. 4, for two distinct values of  
k = 1 per minute and k = 100 per minute at 100 grid point. Notably, the Koren method generates 
smaller error in comparison the other schemes in terms of precision and efficacy. The solutions 
are smooth and have diffusive profile for k = 1 per minute. Thus, all the considered flux-limiting 
methods produces equivalent errors. Further, the first order method produced a diffusive profile, 
while the predicted concentration profiles of other schemes are in good agreement. 

Table 3. Relative-error and EOC of the Koren scheme for single component elution

 Grid points DZ = 0.001 DZ = 0.0001 DZ = 0.00001

 Relative-error EOC Relative-error EOC Relative-error EOC 

100  0.0437 0.0493   0.0507  

200  0.0226  0.9513 0.0237 1.0567  0.0240  1.0790 

400 0.0111 1.0258 0.0112 1.0814  0.0110 1.1255 

800  0.0048  1.2095 0.0050 1.1635  0.0046 1.2578 

1600  0.0016  1.5850  0.0017  1.5564 0.0015  1.6167 

3200  1.1337⋅10–4  3.8190  1.2427⋅10–4  4.0875 1.0373⋅10–4  3.9069 

Table 4. Relative-errors and CPU run times for single component 
elution considering bi-Langumir isotherm at 100 grid points

 Flux limiters Relative-error  CPU

k = 1 [per minute]  k = 100 [per minute]  

Superbee  0.0732 0.1805 11 

Koren 0.0493 0.1296 10 

van Leer 0.0705 0.1808 10 

MC 0.0711 0.1833 10 

Minmod 0.0686 0.1955 9 

First order  0.1458  0.4526 6 
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The two-component elution

In this subsection, we have extended our analysis for the two component non-linear 
elution. In these case studies, the numerical results are generated by solving two component 
non-equilibrium 1-D KLM with the HR-FVS of Koren [1, 12]. Once again the analysis is done 
by using the Danckwert boundary conditions for infinite and finite feed volumes. 

Case I [Generalized bi-Langmuir isotherm]: In this specific study, 1-D KLM given 
in eqs. (1) and (2) along with generalized bi-Langmuir isotherms with p1 = –1 and p2 = 1 in eq. 
(3) are used to simulate the propagation of a mixture carrying two components through a chro-
matographic column [18, 19]. All the standard parameters needed in the simulation are listed 
in tab. 5.

Table 5. Case I: Generalized bi-Langmuir isotherm 
(Parameters of non-linear two-component LKM)

  Parameters L [cm]  ϵ [–] v [cmmin–1] Dz [cm2min–1] a1,I [–] a1,II [–] 

Values 1 0.4  0.1  0.000001  0.5  0.75

  Parameters a2,I [–] a2,II [–] b1,I [–] b1,II [–] b2,I [–] b2,II [–] 

Values  0.25  2.0  0.05  0.015  0.0001 0.1

The column is set at a constant initial state in accordance with a certain initial com-
position. A specific feed composition is continuously injected in the column at time τ = 0 for 
producing an inlet state. For small axial dispersion coefficient, this set-up coincides to a specific 
Riemann-problem. 

In non-linear chromatographic theory, solutions of Riemann-problem are classified 
into three different elution fronts. These elution fronts are characterized as a semi-shock wave, 
a shock wave (discontinuous) and simple rarefaction wave (continuous). Shock is defined as 
a mathematical discontinuity in the equilibrium theory of non-linear chromatography. Shock 
waves arise when upstream state of composition fronts propagate faster than the downstream 
state. As a consequence of this compression, shock waves has sharp front and the components 
concentration improves across the shock. Contrary to the shock waves, rarefaction waves are 
the waves of expansion through which concentration decreases. They typically occur when the 
mobile phase eluted a strongly retained component, as the composition fronts travel along the 
column. 

The numerical solutions comprises of three constant states, for instance the inlet state, 
A, is defined on the left, the initial state, B, is defined on the right, parted by two waves of tran-
sition which might be either the shock waves or the simple waves and the intermediate state, 
Int, is at the intercept of the characteristics of different index arising from states, A and B, re-
spectively. In addition, we used the following abbreviations in the plot: SR := shock wave on the 
right, and RefL := rarefaction wave on the left. 

Result for the simulation of Case I: The following set of parameter values is used to per-
form the considered simulation by our suggested numerical method. The inlet concentrations for 
the Component I is taken as u1

inj = 0.0451 g/l and for the Component II is u2
inj = 0.0476 g/l.  The 

initial concentrations for Component I is taken as u1
inj = 0.1818 g/l and for the Component  II is  

u2
inj = 0.1142 g/l. The injection time for the problem is t inj = 2.0 minutes and the total time of sim-

ulation is t max = 80 minutes. The numerical predictions in time for two different values of k at the 
column out let i.e. x = 1 are displayed in fig. 5. The plots in fig. 5 leads to the classical solution. The 
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solution has two constant states namely the initial state, B, on right and the inlet state, A, on left, 
respectively, a shock wave on the right SR, an Intermediate state, Int, in the center, and a rarefaction 
wave on the right RefL. It was observed that for the considered smaller value of k = 1 per minute the 
solution fronts are more diffusive in comparison of the solution front for the large value of k = 200 
per minute. Moreover, when Dz → 0 the solutions fronts would become more steep and sharper. 

Case II [Standard bi-Langmuir isotherm]: In this test case, 1-D KLM given in eqs. (1)  
and (2) is applied to the two component chromatographic model i.e. Nc = 2. The standard 
non-linear bi-langumir isotherm with p1 = p2 = 1 in eq. (3) is taken into consideration for specific 
injected volumes. The optimal parameters needed for the solution of the problem are  L = 1 cm,   
v = 0. 1 cm per minute, ϵ = 0.4,  a1,I = 0.5, a1,II = 0.75, a2, I = 0.25, a2,II = 2.0, b1,I = 0.05, b1,II = 0.015,  
b2,I = 0.0001, b2, II = 0.1, t max = 80 minutes, and Dz,i = 0.0001 cm2 per minute. A rectangular pulse  

Figure 5. Plots of Case I (Riemann problem) at the column outlet;  
(a) k = 1 per minute and (b) k = 200 per minute

Figure 6. Two component non-linear elution profile at the column outlet; 
(a) k = 1 per minute and (b) k = 100 per minute
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of the liquid mixture containing the two components ui
inj = 1 g/l  is infused in the flowing stream 

of solvent for t inj = 12 minutes. The Dankwerts boundary conditions given by eqs. (8) and (9) 
for Nc = 2 are utilized to generate the numerical result. In fig. 6, numerical predictions for two 
distinct values of rate coefficient of mass transfer, k, are shown. It is depicted from the fig. 6 
that the concentration profiles become broaden along with elongated tails for k = 1 per minute. 
Whereas, for k = 100 per minute the concentration profiles of both components show improve-
ment in separation and have narrow rectangular shapes. Moreover, for k = 100 per minute, the 
results of KLM are exactly equivalent to those obtained for DEM. 

The effects of non-equimolar injection are demonstrated in fig. 7. Three different in-
jection volumes:
––  u1

inj = 6 g/l and  u2
inj = 3 g/l, 

––  u1
inj = 4 g/l and  u2

inj = 2 g/l, and
––  u1

inj = 1 g/l and  u2
inj = 0.5 g/l,

are investigated. Once again the numerical results are generated for two different values of 
the rate coefficient of mass k. The elution profiles are diffusive for k = 1 per minute, the diffu-
sion process dominates the convection process and due to the considered small value of mass 
transfer coefficient the equilibrium is not achieved. Whereas for k = 100 per minute, the pro-
files are sharp and peaked, the results depict equilibrium in the phase system. Moreover, for  
k = 100 per minute, it can be observed that, an increase in the volume of injected feed produces 
an overshoot in the concentration profiles. Moreover, the prominent impact of self-sharpening 
fronts of adsorption can be observed. 

 
Figure 7. Effects of non-equimolar injection on two component non-linear elution profiles;  
(a) k = 1 per minute and (b) k = 1000 per minute

The three component elution

Figure 8 presents the elution profiles for a three component segregation process. The 
parameters for the solution of this case study are L = 1 cm, ϵ = 0.4,  v = 0. 1 cm per minute, a1,I = 1.0,  
a1,II = 0.75, a2,I = 0.5, a2,II = 2.0, a3,I = 0.25, a3,II = 3.5, b1,I = 0.05, b1,II = 0.015, b2,I = 0.0001, 
b2, II = 0.1, b3,I = 0.02, b3,II = 1.0, t max = 100 minutes, and Dz,i = 0.0001 cm2 per minute. Numer-
ical simulation are computed for standard bi-Langmuir isotherm given in eq. (3), for j =1, 
2, 3. The inlet concentration of height uj

inj = 1 g/l for j =1, 2, 3 is infused into column with 
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initial concentration uj
init = 0 g/l for t inj = 2 minutes. The numerical results generated for two 

distinct values of rate coefficient k of the mass transfer are displayed in fig. 8. The numeri-
cal predictions depicts asymmetrical, sharp fronts which is a typical behavior of bi-Langmuir 
adsorption isotherm. Further, components with greater value of equilibrium constant of ad-
sorption elute later from the column and the components having smaller values of equilibrium 
constant of adsorption elute early. The generated elution profiles are dispersed and tailed for   
k = 1 per minute. Moreover, a better separation is accomplished as a result of the establishment 
of equilibrium for sufficiently large value of k  (i.e. for k = 100 per minute).

Figure 8. Three component non-linear elution profiles; (a) k = 1 per minute and  
(b) k = 100 per minute

Conclusions

In this article, two dynamic models known as dispersive equilibrium and the KLM 
of liquid chromatography are simulated numerically. The considered chromatographic models 
were examined for the bi-Langmuir adsorption isotherm by using Danckwert boundary condi-
tions. The resulting systems consists of advection-diffusion PDE paired with an algebraic or the 
differential equation. A high resolution flux-limiting finite volume method was extended for the 
numerical solutions of the considered models. Numerous case studies of increasing difficulty, 
includes 
–– single component, 
–– two components, and 
–– three components elution were considered to scrutinize the models. 

The effects of various kinetic parameter, in particular the rate coefficient of mass 
transfer and the effects of injected feed volumes, were studied on the performance of process. 
Further, the concentration profiles were investigated over non-linear chromatographic condi-
tions for a broad variety of flux limiting functions. The presented finite volume gives second 
order accuracy. The scheme avoids over predictions and numerical oscillations in the solutions. 
The performance of the scheme in terms of stability, accuracy and computational time was 
validated against other flux limiting finite volume schemes. The suggested scheme was found 
more suitable on the basis of simulation results. Although this article deals with 1-D dispersive 
equilibrium and the KLM under isothermal conditions, the analysis can be expanded to the 
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models with enhanced resistance of mass transfer and reaction operating under non-isothermal 
conditions. Moreover, the analysis could also be extended to 2-D models in various situations. 
Such simulations are advantageous for better understanding of underlying transport mecha-
nisms, up-grading physiochemical parameters and optimizing the experimental conditions. 

Nomenclature

ai,I 	 – adsorption constant of component i  
for site I, [–]

ai,II 	– adsorption constant of component i  
for site II, [–]

bi,I 	 – bi-Langmuir isotherm coefficient of 
component i for site I, [–]

bi,II 	 – bi-Langmuir isotherm coefficient of 
component i for site II, [–]

Dz,j 	– axial dispersion coefficient, [cm2min–1]
ϵ 	 – external porosity, [–]

F 	 – phase ratio, [–]
km 	 – mass transfer coefficient, [min–1]
L 	 – column length, [cm]
t 	 – time co-ordinate, [min]
tinj  	– time of injection, [–]
tmax 	– total simulation time, [min]
uj

init – initial concentrations, [gl–1]
uj

inj 	– inlet concentration, [gl–1] 
v 	 – intersticial phase velocity, [cmmin–1]
z 	 – axail co-ordinate, [–]
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