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In this paper, the non-linear local fractional Bratu-type equation is described by
the local fractional derivative in a fractal space, and its variational formulation is
successfully established according to semi-inverse transform method. Finally, we
find the approximate analytical solution of the local fractional Bratu-type equation
by using Adomina decomposition method.
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Introduction

Fractional derivative is an excellent mathematical tool to establish variety of complex
mathematical physical models in the fractal space [1, 2]. Yang’s local fractional derivative first
was proposed by Yang [3-5]. Once proposed, the Yang’s local fractional derivative has attracted
the attention of many researchers. It has been widely used in the fields of physics and engi-
neering, such as nanoengineering, dynamics system, microelectronics and so on.

In this paper, we consider the local fractional Bratu-type equation:
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where A is constant, and D“u/Dx” is the Yang’s local fractional derivative.
When a =1, eq. (1) is the classical Bratu-type equation [6]:
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which is adopted to elaborate a combustion problem in a numerical slab. The approximate an-
alytical solution of eq. (2) has been researched by many different methods, such as homotopy
perturbation method [7-9], variational iteration method [10, 11], reduced differential transform
method [12], homotopy analysis method [13-15], and so on.
When the combustion problem in the flat plate occurs in a fractal space, the traditional
definitions of the derivatives will be invalid. The Yang’s local fractional derivative has to be
used to describe this phenomenon.
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In this paper, the variational formulation of the local fractional Bratu-type equation
is established by the semi-inverse method [16, 17], and its approximate analytical solution is
obtained by Adomina decomposition method.

Mathematical tools

Let C,(a,b) be the sets of the local fractional continous functions. The local frac-
tional derivative is defined [3-5]:
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where A”[$(s1) = ¢(up)] = T(1+ ) Alp(11) — ¢(14)]-

Therefore, we can obtain the local fractional partial derivative of the function ¢(,t)
of fractal order «, (0 <« <1) at u = y,, defined by [3]:
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where A“[p(1,1) — @(11,1)] = T(1+ a)Alp(12,1) — 9(y,1)]-
The local fractional derivative of high order is written [3]:
m—timesa
¥ (r) = Dy - D}\Y(r) (5)
The local fractional partial derivative of high order is [3]:
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In fractal space, the Mittage Leffler function, sine function and cosine function, are
respectively defined [3]:
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where e Rand 0< S <1.

Let @, (%), @,(xy) € C,(a,b).
The local fractional derivatives of the non-differentiable functions have the following

properties [18,19]:

D@ (x0) + @, (%)} = D@, (%) + D@, (1)
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where @, (y,) #0.

Adomina decomposition method

To illustrate Adomian decomposition method [20, 21], the function u(x) is defined:

u(x) =, (x) (7)
n=0
where the components u, (x) are usually determined recurrently. The non-linear operator £ (u)

can be decomposed into the following result:
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where 4, are called the Adomian polynomials of u,u,,u,...u,, given:
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or equivalently:
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These polynomials can be generated for all classes of non-linearity by using eq. (9).
Recently, an alternative algorithm for constructing Adomian polynomials has been proposed by
Adomian [22].

Variational principle for the local fractional Bratu-type equation
Consider the local fractional Bratu-type equation:
DZa
D—zfme“:o, x>0, 0<a<l (10)
X

where D%u/Dx? is the Yang’s local fractional derivative.
The variational principle of eq. (10) is established by semi-inverse method [23],
which reads:
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We obtain the Euler-Lagrange equation, e. g.:

SR P SOAR U | e (12)
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Here, eq. (12) is the same as eq. (10).

The approximate analytical solution for
local fractional Bratu-type equation

Let us consider the local fractional Bratu-type equation:

2a
DrU e =0, x>0, 0<a<l (13)
Dx**
with the initial conditions:
u(0)=u)=0 and u'“(0)=¢ (14a,b)

In order to adopt the Adomina decomposition method, eq. (13) can be written into the
following form:

lu = e (15)
and
u(0)=u1)=0 (16)
where the operator ¢ is defined:
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Hence, the inverse operator of / is given:
= [ [ dedx (18)
00

Using ¢~ on both sides of eq. (15), we have:

u(x)=ex+ 07" (n’e") (19)
Substituting eqs. (13) and (14) into eq. (19), we have:

Du,(x)=ex+ 07" (78 > A,,J (20)
n=0 n=0
According to Adomian decomposition method, we have the recurrence relation:

uy(x)=¢x
21
{uk+l(x>:n2w(Ak) D

where k> 0.
The term A, of eq. (21) can be determined:
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Using the eq. (21) and eq. (22), we obtain:
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Therefore, the approximate analytical solution of eq. (13) is the following form:
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When a =1, ¢ =m, eq. (13) has exact solution, e. g.:

u(x) = —In[1 — sin(mx)] (24)
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Here, eq. (24) is very close to eq. (23). It can be concluded that the Adomina decom-
position method is a very powerful tool to find the approximate analytical solution for the non-
linear local fractional differential equation.

Conclusion

In the present paper, the local fractional Bratu-type equation was described by Yang’s
local fractional derivative. The variational formulation of the local fractional Bratu-type equa-
tion was successfully established according to the semi-inverse transform method in the fractal
space and the Adomina decomposition method are adopted to find its approximate analytical
solution.

Nomenclature

t — time co-ordinate, [s] Greek symbols

X — space co-ordinate, [m] o — a constant, [-]
p — aconstant, [1/s]
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