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In this paper, the non-linear local fractional Bratu-type equation is described by 
the local fractional derivative in a fractal space, and its variational formulation is 
successfully established according to semi-inverse transform method. Finally, we 
find the approximate analytical solution of the local fractional Bratu-type equation 
by using Adomina decomposition method. 
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Introduction

Fractional derivative is an excellent mathematical tool to establish variety of complex 
mathematical physical models in the fractal space [1, 2]. Yang’s local fractional derivative first 
was proposed by Yang [3-5]. Once proposed, the Yang’s local fractional derivative has attracted 
the attention of many researchers. It has been widely used in the fields of physics and engi-
neering, such as nanoengineering, dynamics system, microelectronics and so on.

In this paper, we consider the local fractional Bratu-type equation:
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where λ  is constant, and /D u Dxα α  is the Yang’s local fractional derivative.
When 1α = , eq. (1) is the classical Bratu-type equation [6]:
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which is adopted to elaborate a combustion problem in a numerical slab. The approximate an-
alytical solution of eq. (2) has been researched by many different methods, such as homotopy 
perturbation method [7-9], variational iteration method [10, 11], reduced differential transform 
method [12], homotopy analysis method [13-15], and so on.

When the combustion problem in the flat plate occurs in a fractal space, the traditional 
definitions of the derivatives will be invalid. The Yang’s local fractional derivative has to be 
used to describe this phenomenon.
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In this paper, the variational formulation of the local fractional Bratu-type equation 
is established by the semi-inverse method [16, 17], and its approximate analytical solution is 
obtained by Adomina decomposition method.

Mathematical tools

Let ( , )C a bα  be the sets of the local fractional continous functions. The local frac-
tional derivative is defined [3-5]:
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where 0 0[ ( ) ( )] (1 ) [ ( ) ( )]α φ µ φ µ α φ µ φ µ∆ − ≅ Γ + ∆ − .
Therefore, we can obtain the local fractional partial derivative of the function ( , )tϕ µ  

of fractal order α , (0 1α< < ) at 0µ µ= , defined by [3]:
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where 0 0[ ( , ) ( , )] (1 ) [ ( , ) ( , )]t t t tα ϕ µ ϕ µ α ϕ µ ϕ µ∆ − ≅ Γ + ∆ − .
The local fractional derivative of high order is written [3]:
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The local fractional partial derivative of high order is [3]:
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In fractal space, the Mittage Leffler function, sine function and cosine function, are 
respectively defined [3]:
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where Rµ∈  and 0 1β< < .
Let 1 0( )ϖ χ , 2 0( ) ( , )C a bαϖ χ ∈ .
The local fractional derivatives of the non-differentiable functions have the following 

properties [18,19]:
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where 2 0( ) 0ϖ χ ≠ .

Adomina decomposition method

To illustrate Adomian decomposition method [20, 21], the function ( )u x  is defined:
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where the components ( )nu x  are usually determined recurrently. The non-linear operator ( )F u  
can be decomposed into the following result:
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where nA  are called the Adomian polynomials of 0 1 2, , ... nu u u u , given:
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or equivalently:
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These polynomials can be generated for all classes of non-linearity by using eq. (9). 
Recently, an alternative algorithm for constructing Adomian polynomials has been proposed by 
Adomian [22].

Variational principle for the local fractional Bratu-type equation

Consider the local fractional Bratu-type equation:
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where /D u Dxα α  is the Yang’s local fractional derivative.
The variational principle of eq. (10) is established by semi-inverse method [23], 

which reads:
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We obtain the Euler-Lagrange equation, e. g.:
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Here, eq. (12) is the same as eq. (10).

The approximate analytical solution for  
local fractional Bratu-type equation

Let us consider the local fractional Bratu-type equation:
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with the initial conditions:

	 (0) (1) 0u u= =    and   ( ) (0)u α ε= 	 (14a,b)

In order to adopt the Adomina decomposition method, eq. (13) can be written into the 
following form:

	 2 uu e= π 	 (15)
and

	 (0) (1) 0u u= = 	 (16)

where the operator   is defined:
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Hence, the inverse operator of   is given:
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  on both sides of eq. (15), we have:
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Substituting eqs. (13) and (14) into eq. (19), we have:
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According to Adomian decomposition method, we have the recurrence relation:
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where 0.k ≥
The term kA  of eq. (21) can be determined:
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Using the eq. (21) and eq. (22), we obtain:
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Therefore, the approximate analytical solution of eq. (13) is the following form:
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When 1α = , ε = π, eq. (13) has exact solution, e. g.:

	 ( ) ln[1 sin( )]u x x= − − π 	 (24)
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Here, eq. (24) is very close to eq. (23). It can be concluded that the Adomina decom-
position method is a very powerful tool to find the approximate analytical solution for the non-
linear local fractional differential equation.

Conclusion

In the present paper, the local fractional Bratu-type equation was described by Yang’s 
local fractional derivative. The variational formulation of the local fractional Bratu-type equa-
tion was successfully established according to the semi-inverse transform method in the fractal 
space and the Adomina decomposition method are adopted to find its approximate analytical 
solution.

Nomenclature
t	 –	 time co-ordinate, [s]
x	 –	 space co-ordinate, [m]

Greek symbols

α	 –	 a constant, [–]
β	 –	 a constant, [1/s]
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