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In this paper, a Lagrangian of the coupled Navier-Stokes equations is proposed
based on the semi-inverse method. The fractional derivatives in the sense of
Riemann-Liouville definition are used to replace the classical derivatives in the
Lagrangian. Then the fractional Euler-Lagrange equation can be derived with
the help of the fractional variational principles. The Agrawal’s method is devot-
ed to lead to the time-space fractional coupled Navier-Stokes equations from the
above Euler-Lagrange equation. The solution of the time-space fractional coupled
Navier-Stokes equations is obtained by means of RPS algorithm. The numerical
results are presented by using exact solutions.
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Introduction

Fractional PDE can describe natural and physical phenomena more realistically and
accurately. For example, it was widely used in rheology, electrostatics, fluid flow, biology,
reaction diffusion and so on [1-5]. Many problems can be described by partial differential
equations, such as the KP equation, the mKdV equation, the Schrodinger equation, and the
Boussinesq equation [6]. In this paper, we use the semi-inverse method , the Euler-Lagrange
equation and Agrawal’s method [7] to introduce the (3+1)-dimensional time-space fractional
coupled Navier-Stokes equations, which have certain development significance for the study of
fractional equation.

In the study of the fractional equation, the solution is important [8-10]. The solving
mothod is also important for fractional PDE. Recently, there are some importent methods to
abtain the solution of PDE, such as the Hirota method [11], the optimal homotopyasmptotic,
the homotopy analysis method [12], and so on [13]. In this paper, the residual power series
(RPS) method is used to obtain the analytical solution of the Navier-Stokes equations. Unlike
the classical power series method, the RPS method does not need to compare the corresponding
coefficients and recursive relations, and does not require linearization, discretization, and per-
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turbation. The main advantage of this approach is that it is easier and more accurate to derive
solutions than integration.

Derivation of time-space fractional coupled Navier-Stokes equations

The Navier-Stokes equations is derived from the semi-inverse method, the Euler-
Lagrange equations and Agrawal’s method. And the equation is considered to describe the mo-
tion of fluid in models related to ocean currents, water flow in pipes, weather and so forth.

The unsteady (3+1)-dimensional incompressible Navier-Stokes equations in the
Cartesian coordinate system is:

Ve =0 (1)

w, + Ruw, + Rvw, + Rww, + P, —w,, —w,, —w, =0

u, + Ruu, + Rvu,, + Rwu, + P, —u, —u, —u, =0

v, + Ruv, + Rww, + Rwv, + P, —v,. —v

zz

with the incompressibility and boundary and initial conditions:

uﬂﬂm%wﬂmﬂ:oa (5 LI ): b (9 s )EF, (: s 70): j( 5 )

where U (u,v,w) =[u(x,y,z),v(x, y,z),w(x, y,z)] is the fluid velocity vector field with the com-
ponents u(x, v, z,t), v(x, y, z,t), and w(x, y, z,¢) at the point (x, y, z) and time 7, (x, y,1) € 2  R®,
I — the boundary of 2, (i=1,2), P — the pressure, J — the maximum velocity of the object,
L — the characteristic linear dimension, g — the dynamic viscosity, v — the kinematic viscosity,
p — the density of the fluid, and R — the Reynolds number, given as R = pVL/u=VL/v.

Letu(x,y,z,t) = 4, (x,y,2,8), (x, y,z,t) = B (x, y,z,t), and w(x, y, z,t) = C,(x, y,2,1).
The functional of eq. (1) can be represented:

J :JRdxjydijdzJTdtx
x| (44, + 4,RAA, + ARB A, + A,RC A, + AP, — A, — A A, — AA )+

Xzz

+B(B,B,, + B,RA,B,, + B,RB B,, + B,RC,B,_ + BsP, - BB,, — B,B,,, — BB, ) +

Xzz

+C(GC,y + CRAC,, + CRB,C,y, + CuRC,C,. + CsP. = CoCyy — C,C,, — GC. )] 2)

XXX X

where 4, B;, and C; (i =1,---,8) are the Lagrange multipliers.
From eq. (2) we obtain:

Ax |R:Ax |T:Ax |Y:Ax |Z:Bx |R:Bx |T:Bx |Y:Bx |Z:Cx |R:Cx |T:Cx |Y:Cx |Z:0
Using the variation optimum conditions and 6J(4, B,C) =0, we have:

2A A, +34RAA, +3ARB A, +3A4RC A, + AP, -2 ~24 A, ~24A_ +
+2B,B,, +3B,RA, B, +3B,RB,B,, +3B,RC,B,. + B;P, ~2B,B, . ~2B,B,, ~2BB,_. +

x"xz yy
+2G,C,, +3CRA,C,, +3CRB,C,, +3C,RC,C,. + CsP, —2C4C,y —2G,C,,,, —2GC,. =0 (3)

Comparing eq. (2) with eq. (3), we get:

1 1
91,6,7,8 :Ea 92,3,4 :E’ 95 =1, (0=4,B,0)
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Substituting the value of €.(i =1,--+,8) into eq. (3), the Lagrangian form of the Navier-
-Stokes equations can be written:

1 1 2 1
L :_EAXAI —ER(AX +AAXX)A _ER(A)/BX +ABX}’)AX -

X

—%R(AZCX +AC_)A, +P. A +%AXXAX +%AxyAy +%AXZAZ —

1 1 1
B8, —ER(BXAX +BA,)B, ~R(B,B, +BB,)B, -

—%R(BZCX +BC,.)B, +PyB +%BXXBX +%BxyBy +%szBz -

1 1 1
—ECXC, _ER(CxAx + CAXX)CX _ER(CyBx +CB,,)C, -

—%R(CZCX +CC,)C, +PZC+%CXXCX +%cwcy +%cxzcz (4)

In the same way, we have:
F= [—lpf ADF A —1R[(Dﬂ Ay +ADY 4] D! 4 Ry ap?B+ 40P D7 BYDP 4 -
2 3 X X X 3 y P X v X

—%R(Df ADPC+ AD’D:C)DP 4+ P A +%DjﬂADfA +%DfD;AD§A +%Dfo AD: A} +

1 1 1 1
+[—§DxﬁBDf‘B —ER(DfBDf A+BD?’ A)D’B —gR(DjBDfB +BD/D/B)D’B —ER X

x(DfBchJrBDfD%‘C)DfD%‘B+PyB+lDfﬂBDfB+1D/’D7BDVB+1D/}D53DS“B +
z z z 2 2 x 7y y 2 X Tz z

+[_%D5CDIQC_§R(D§CD5A+CD§ﬂA)DfC_§R(Dy7CDfB+CDXﬂD;B)DXﬂC—%Rx

x(D:CDPC+CD’ D: C)DPC + PC +%D§ﬁ cDfe +%DfD;’ CD;C +%Dfo CD: c} (5)

where Dxﬂ f(x) is the modified Riemann-Liouville (mRL) fractional derivative.
The time-space fractional Navier-Stokes equations is:

Jp=[(ax) [ (@) [ (d2) [ (ar)F ©6)

As 6J; =0, the Euler-Lagrangian equation of the time-space fractional Navier-Stokes
equations is obtained. Using the fractional potential function, denoted by:

DLO(x,y,z,t)= AT [0=A4,B,C,AT = (u,v,w)]
we get the time-space fractional Navier-Stokes equation:

DYAT + RATDAT + AP’ — D,AT =0 (7)
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where

:(Dxﬁ’D)})”ng)Tﬂ Dzz(Dfﬂ’Di}”Dzzg)T’ AP,_( X y; )

and D/ f" is the mRL fractional derivative of function f.
Solving time-space fractional Navier-Stokes equations
by RPS algorithm
From eq. (7), the RPS method [14] implies the solution of the equations as a fractional

power series about the initial point # = 0 in the following forms:

R h, (x,y,2)t"
—t . &,sh,), and P=) el 8
LT arny = Ungnh). Z(:) (na+1) ®

AT =

where O0<a <1, (x,y,z)e2,and 0<¢t<R.
For ¢ =0, the initial conditions can be written:

u(‘x’yﬂz90):f(x’y’z)7 v(‘xﬂyﬁzﬂo):g('xﬂyﬁz)ﬂ W(x’yﬁz70):m(x’yﬁz) (9)
The initial approximation of u(x, y, z,t), v(x, y, z,t), and w(x, y,z,t) can be expressed:

uy(x,,2,0)= fo(x,y,2) = f(x,9,2)
vo(%,1,2,0) = g (x,,2) = g(x,y,2) (10)
wy (X, y,2,0)=my (x, y,2) = m(x, y, z)
We make a shift of the index » from 0 to 1 as follows:
f(n-Da

nl(x y’Z)
POoy,20)= Z M(n-Da +1] (1)

The series of u,v,w, and P, denoted as u,, v, w,, and B, can be expressed:

(n-Da
nltn

k
AT, = (u, v, W) T=(f,g,m), Pk|t 0 Z]"[(n Do +1]

n=1

k ~ na
AT =+ Y (12)

= (na+1)

where k=1,2,3.

The residual functions for eq. (7), denoted as Res,,Res,, and Res,,, are defined:

Res, = Df'u+ RuD/u+ RvD]u+ RwD:u + P, - D;’u-D}"u - D>*u
Res, = Df'v+ RuD/v+ RvD]v+ RwD:v + P, - D}/v-D}’v-D}v (13)
Res, =Dfw+ Rquw+RvD;w+ RwDSw+ P, -Dfﬂw-D;}'w-Dzsz
From eq. (13), the & truncation error functions can be given:
Res, = Dfuy + Ru,D/u, + Rv, D]u; + Rw,Diu; + P, — D;"u; — D}’ u; — DX*u,
Res,, = Dv; + Ruy DPv + Rv,Dlv, + Rw,D>v, + By, — DFv, =Dy, = DX¥v,  (14)

Res,, =Df'w; + Ruy D w, + Rv.Dlw, + Rw,D5w, + P — D" w, — D' w, — D>*w,
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Substituting eq. (8) into eq. (14), the new forms of Res,, (x,y,z,t), Res , (x,,z,t),
and Res,, (x, y,z,t) are obtained. It is known that Res(x, y,z,t) =0, lim,_, Res, (x,y,z,£) =0,
telt,,t, + R], where R is a non-negative real number and represents the radius of convergence.
So D;* Res(x, y,z,t) =0, the Caputo fractional derivative of a constant is zero, the fractional
derivative D/” of Res(x,y,z,t) and Res, (x,y,z,¢) are matching at ¢ =, for each r=0,1,2---.
Then, lett, =0, =k -1, we have:

D* V¥ Res, (x,7,2,0)=0, D Res, (x,»,2,0)= 0, D* ™ Res,; (x,,2,0)=0 (15)
In the following step, we can calculate the coefficients f, (x, y,z),g,(x, y,z), m,(x, y,z),
and &, ,(x,y,z), where n=1,---, k. Finally, we solve the algebraic system of eq. (15).
Approximate RPS solutions

For k =1, we have:

AT, =7+ 7% T(a+1) and P(x,y,z,t) = hy(x,¥,2) (16)

Substituting eq. (16) into Res,, ,Res,,, Res,, at =0, we have the first approximate
RPS solutions:

ul(x,y,z,t)zf(x,y,z)+[—Rfof—RgDy7f—RmD§f—

t2a

Ia+1)
M (x,y,z,t) = g(X,y,Z) +

~@(x)+ D f+ D} f+ D f]

2a
t
+[~RfD’ g — RgD! g — RmD: g — () + D;” g+Dﬁ7g+Df§g]m (17)

wi(x,y,z,t)=m(x,y,z)+

2a

+H{—RfD’m - RgD;m — RmD:m—wy,(z)+ D’ m+ Diym + Dzzgm]m

R(x,y,2,0) = hy(x,7,2) = [ ()dx + [ 4 (0)dy + [y (2)dz

For k=2, we have:

~_a ~ 2a a
AT, =7+ al + ol and Pl(x,y,z,t)zho(x,y,z)+M
Ta+l) TCa+l) Ta+1)

Substituting eq. (18) into Res,,, Res,,,Res,, at t =0, we obtain the second approx-
imate RPS solutions:

(18)

tll
—_—t
I'(a+1)
=0, (x) = Rf (x,3,,2) DL f,(x, 3. 2) = R (x, 3, 2)DY f(x,3,,2) + D’ f(x, ., 2) +

+DY (%, ¥y,2) + D2 (X, ¥,,2) — RE(X, ¥, 2) D] f;(x, 34, 2) — Rg| (X, ¥, 2) X

uy = f+[-RfDL f = RgD} f = RmD; f — g (x) + D}’ f + D7 f + DX* f]

2a

t
XD}};’f(xaybaZ)_Rm(xaybaz)Dfﬁ(xaybaz)_le(xaybaZ)fo(xaybaz)]m (19)
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v, =g +[-RD/g - RgD] g — RmD: g — ¢(y)+ D}’ g + D" g + D g]

ta

—+
Ta+1)

+[_¢2(y)_Rf(x,yazb)Dxﬁgl(-x:y>Zb)_Rfl(xay,zb)Dxﬁg(x’y:Zb)+D§ﬁgl(x’yazb)+
+D}%ygl(xay>zb)+D22§g](x:y,zb)_Rg(xayazb)D;gl(x,yazb)_Rgl(x,yazb)x

2a
xD7g(x,y,2z,)— Rm(x, y,z D¢ X,y,2,) = Rmy(x,y,z D: LYEN S Ty (20
1, 8(x,,2;) (x,¥,2,)DZ g (%, ,2) 1(6,3,2,) D7 g(x, b)]r(2a+1) 20
o
W, :m+[—Rfom—RgD§m—RmD§m—wl(z)+D§ﬁm+D57m+D5§m]ﬁ+
a+

w5 (2) = Rf (x,,y,2)DE my (x,,9,2) = Rf; (%, ¥, 2) DL m(x,, y,2) + D 'my (x,,y,2) +
+Dy27m1(xb»yaz) +Dz2§m1(xb»y72) —Rg(xb,y,z)Dyyml(xb,y,z) —Rg;(x,,y,2) %

2a
XD;m(xbay:Z) - Rm(xbay:Z)Dfml(xbayaZ) - le(xbayaZ)Dfm(xbay:Z)]—
T Qa+1)
Py(x,3,2,0) = Iy (x,3,2) = [ @y () + [ (n)dy + [y (2)dz (21)
Table 1. The errors of u(x, y, z)
y=z= /2 H”z - uExact”
X t=02 t=04 t=0.6 t=0.8
/6 4.03-10°2 1.27-107! 2.62:107! 4.43-107!
/5 3.87-107 1.17-10"! 2.36-10"! 3.95-10"!
/4 3.50-1072 9.82:1072 1.90-107! 3.10-107!
/3 2.69-107 6.34:107 1.10-107! 1.65-107!
/2 1.47-102 2.95-102 4.42-102 5.89-102
Table 2. The errors of v(x, y, z)
x=z=mn/2 HV2 _ vExact”
X t=02 t=04 t=0.6 t=0.8
/6 7.19-10"! 9.49-107! 1.12:10° 1.25-10°
/5 7.02-10"! 9.27-10"! 1.09-10° 1.22:10°
/4 6.45-10"! 8.52:107! 1.00-10° 1.12:10°
/3 5.00-10"! 6.60-10"! 7.76:107! 8.71:107!
/2 1.26:107" 1.67-107" 1.96:107" 2.20-107"
Table 3. The errors of w(x, y, z)
x=z=m/2 ||W2 . WExactH
X t=02 =04 t=0.6 t=0.8
/6 7.82-10"! 1.03-10° 1.21-10° 1.36-10°
/5 7.90-10"! 1.04-10° 1.23-10° 1.38-10°
/4 7.67-10"! 1.01-10° 1.19-10° 1.34-10°
/3 6.19-10"! 8.17-107! 9.61-10"! 1.08-10°
/2 2.28:1071¢ 3.01-1071° 3.54-1071¢ 3.98-107'6
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Numerical results

In this section, in order to verify the accuracy of the RPS method, we study the numer-
ical solution of the time-space fractional Navier-Stokes equations. The errors between the exact
solutions and the third order RPS approximate solutions when & =1 at different time ¢ are
shown in tabs. 1-3.

Conclusion

In the present work, the time-space fractional coupled Navier-Stokes equations was
constructed using the semi-inverse method and the Agrawal’s method. The analytical solutions
of the three-dimensional time-space fractional Navier-Stokes equations were obtained by using
the RPS method, and the numerical results were in good agreement with the exact solution. It is
shown that the RPS method is a very simple and effective tool for solving linear and nonlinear
fractional partial differential equations.
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