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In this paper, we consider the Riemann-Liouville-type general fractional deriva-
tives of the non-singular kernel of the one-parametric Lorenzo-Hartley function. 
A new general fractional-order-derivative Goldstein-Kac-type telegraph equation 
is proposed for the first time. The analytical solution of the considered model with 
the graphs is obtained with the aid of the Laplace transform. The general fraction-
al-order-derivative formula is as a new mathematical tool proposed to model the 
anomalous behaviors in complex and power-law phenomena.
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Introduction

The telegraph equation, also known as the transmission line equations, was firstly 
proposed by Kelvin in [1]. It has long been the focus of the attention of mathematicians and en-
gineers [2, 3]. As early as the Atlantic cable was communicated, Kelvin discovered a long-line 
effect. The reflection and transmission of the telegraph signals are very different from the low 
frequencies. Subsequently, Kelvin further proposed the theory of the signal propagation based 
on telegraph equation, which was used to explain how the signal propagates in the cable and to 
solve the major theoretical problems of laying cables on the seabed. The telegraph equation can 
be widely used to characterize both the wave and conduction processes. 

In recent years, the fractional telegraph equation has received the great attention in 
theory and applications [4-7]. At present, the fractional telegraph equation has been applied in 
many scientific fields to describe the various phenomena, such as the fluid-flow of the porous 
materials, reaction diffusion phenomena, acoustic wave propagation in viscoelastic materials, 
self-similar structural dynamics, signals in bioelectric systems and processing and so on [8-10]. 
Due to the characteristics of the theory of the fractional calculus, it compensates for the defects 
of the classical differential equations in the scoring objective reality.

The general fractional calculus, as the kernels of the special functions, for example, 
the exponential, Lorenzo-Hartley, Miller-Ross, Mittag-Leffler and Prabhakar functions, were 
considered in [11-13]. The general fractional-order-derivative (GFD) relaxation via exponen-
tial kernel was discussed in [14]. The rheological model in the general fractional-order via 
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Prabhakar kernel was investigated in [15]. The general fractional-order Burgers model via 
Mittag-Leffler was reported in [16]. 

In 1998, Lorenzo and Hartley applied the one-parametric Lorenzo-Hartley (LH) func-
tion [17-19] to describe the relaxation process in [20-24]. The Goldstein-Kac-type telegraph 
model within the GFD with one-parametric LH functions has not been proposed. Motivated by 
this idea, the main purpose of the paper is to propose the Goldstein-Kac-type telegraph equation 
within the GFD with one-parametric LH function in the sense of Riemann-Liouville-type and to 
investigate the analytical solution of the proposed model with the help of the Laplace transform.

General fractional derivative with one-parametric LH function

Let +
0, , ,   , and 0  be the sets of real numbers, non-negative real numbers, com-

plex numbers, positive integers and { }0 = 0  , respectively.

Special functions

The one-parametric LH function is defined [17-19]:
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where x∈, +
0α ∈ , +

0µ∈ , and 0κ ∈ .
The Laplace transform of eq. (1) is given [12]:

	 1{ ( )} (1 )xα α α
α µ τ µτ− − −Ω = −A 	 (2)

where { ( )} ( )f x f τ=A  is the Laplace transform operator.
The Prabhakar function is defined:
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The Laplace transform of eq. (3) is:

	 1
,{ ( )} (1 )x E x t tν θ α ν α θ

α ν λ λ− − − −= −A 	 (4)

Riemann-Liouville-type GFD within LH kernal

Let α ∈, 1 Re( ) 0α> > , [Re( )] 1κ α= + , a b−∞ < < < ∞, κ ∈ , and γ ∈.
The left-sided Riemann-Liouville-type GFD of one-parametric LH function is defined [11]:
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and the right-sided Riemann-Liouville-type GFD with one-parametric LH function by [11]:
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In particular, when 1κ = , eqs. (4) and (5) become [11]:
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and
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For 0a =  eqs. (4) and (5) can be written [11]:
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respectively.
Let α ∈, 1 Re( ) 0α> > , a b−∞ < < < ∞, and γ ∈. Then we have [11, 25]:
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A GFD Goldstein-Kac-type telegraph model

We now consider a new model of the GFD Goldstein-Kac-type telegraph equation:
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with the initial and boundary conditions:
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where
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With the use of eqs. (13) and (19), we have that:
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Setting the general solution of eq. (15), we have that:

	 ( ) ( )1 2( , ) sin cosu x s A x A x= π + π 	 (23)

where 1A  and 2A  are the constants.
Then, we have:
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which leads to:
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By considering the inverse Laplace transform, we can obtain the solution of eq. (27):
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In particular, for 0a =  we have:
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Thus, we have:
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and the graph of the solution of (27) is showed in fig. 1.
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t x t x

t x t x

Figure 1. The solution of (27) with the different values; (a) α = 0.2, (b) α = 0.6,  
(c) α = 0.8, and (d) α = 0.9

Conclusion

In our work, based on the GFD with one-parametric LH function, the GFD Goldstein- 
-Kac-type telegraph equation was proposed for the first time. The analytical solution of the math-
ematical model was discussed by using the Laplace transform scheme. The GFD formula can 
be used to express other nonlinear phenomena appear in complex and power-law phenomena.
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