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In order to reduce energy consumption of the centralized chilled-water cooling 
system in large buildings, a dynamic control strategy was proposed for cooling 
plants by modelling and optimization. Combined with the chilled water flow model, 
this paper analyzed the parallel operation characteristics of the chillers and takes 
the load distribution as one of the control parameters. Based on the measured data 
of a typical cooling system that has undergone preliminary energy-saving trans-
formation, the residual neural network is applied to model the relationship among 
energy consumption, controllable parameters and environmental parameters, and 
the residual neural network outperforms multi-layer perceptron and support vector 
regression. To minimize the total energy consumption, the gray wolf optimizer was 
introduced to optimize the controllable variables of the cooling system. Compared 
with the energy consumption before optimization, the simulation energy consump-
tion after optimization decreased 10.45% on average, while the energy saving rate 
is only 7.9% with equal chilled water supply temperature of parallel chillers. 
Key words: chilled-water cooling system, modelling and optimization,  

cooling load distribution, energy conservation

Introduction

The HVAC system is increasingly common in large-scale public buildings. While 
maintain comfortable indoor air environment, it accounts for 50~60% of the energy consump-
tion required for building. The central chilled-water system, a subsystem of the HVAC system, 
consumes 60% of the total electricity of the HVAC system [1]. The central chilled-water system 
includes chillers, chilled water pumps, cooling water pumps, and cooling towers. Because of 
the changing weather condition, the uncertain quantity of the people, lead to the great fluctu-
ation of the cooling load in the building. The settings of cooling plants are fail to dynamically 
controlled with the environmental parameters and cooling load demand, therefore, it has a large 
energy saving space [2].

The traditional control methods of HVAC system mainly include experience control, 
proportional integral derivate control, fuzzy control. The traditional methods have been widely 
applied in real system due to its cheap price. However, central chilled-water system is an ex-
tremely complex non-linear system, which has numerous plants and highly coupled operating 
parameters. The traditional control methods is difficult to achieve desired energy conserva-
tion effect [3]. In recent years, scholars have attempted to employ the heuristic optimization 
algorithm (such as genetic algorithm – GA, particle swarm optimization – PSO) to solve the 
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operating parameters optimization problem. This method have to build the energy consump-
tion estimation model first, there are many modelling methods which can be divided into three 
kinds: mechanism modelling, parameter identification modelling, and data-driven modelling. 
Wemhoff and Frank [4] applied lumped model to predict the energy savings of HVAC system, 
the validation results suggest that the lumped HVAC operate good. The model provide the 
basic for optimization of HVAC system, but a great number of theoretical formulas involved 
in the modelling process. The mechanism modelling method is too complex to be applied in 
actual project. Therefore, the mechanism model with undetermined coefficients was proposed. 
Vakiloroaya et al. [5] developed a theoretical-empirical model to predict the performance of 
cooling plants over a wide range of operating conditions. The variables were determined by 
regression of field-test data collected. The experiment in real system suggest that the predicted 
data deviate from the actual data by higher than 10%. The parameter identification modelling 
method can satisfy the basic simulation demand, but the prediction accuracy is low. With the 
development of machine learning and the arrival of the big data era, data-mining technology 
are increasingly used in HAVC field. Neural network model has gradually become an important 
method for HVAC system modelling due to its efficiency and favorable accuracy compare to the 
conventional modelling approaches. Chen et al. [6] used the artificial neural network (ANN) 
to model the relationship among the power consumption of chiller, chilled water temperature, 
cooling water temperature and cooling load. According to the forecast result, the R2 of the pow-
er consumption model by ANN was higher than that of the linear regression method (namely 
parameter identification modelling method), and the error percentage is lower. Based on the 
model, PSO was used to optimized the chiller loading, and obtain 12.68~17.63% energy saving 
as the load varies. Wang et al. [7] applied three different types of neural networks, namely radial 
basis function, multi-layer perceptron (MPL), support vector machine to model the component 
of the hybrid ejector air conditioning system. The MPL outperforms other two networks and 
produce the most accurate and steady component models in the research. 

Due to heavy cooling load and control requirements, multi-chillers system is used as 
cooling system. The chillers most of time are under partial cooling load, and the law of energy 
efficiency varied with load is distinct for different plants. Therefore, minimize the energy con-
sumption of chillers and determine the optimal load distribution is one of the research focus 
in HVAC system [8]. Chang et al. [9] established the relationship between COP and partial 
load rate of four chillers with different rated cooling capacity in a decoupled air conditioning 
system. The chilled water supply temperature as the variable and the evolution strategy was 
employed to solve optimal chiller loading problem. The simulated results presented evolution 
strategy method can save 0.98%-8.59% as the load varies. Yan et al. [10] mapped the relation-
ship between the COP and the chiller capacity, chilled water return temperature, and cooling 
water return temperature by least-square method. Based on the model and GA, optimize the 
set-points of chilled water supply temperature according to the chilled water return temperature 
and chilled water flow collected in real time to optimize the cooling load distribution. The op-
timization results on the typical days of summer and transition season showed that the energy 
consumption of the chillers reduced by 25.75% and 5.35%, respectively, compared with the 
original operation mode. 

In this paper, a cooling system with multi-chiller in a subway station was selected as 
the study object. Based on the collected real-time operating data, the residual neural network 
(ResNet) is applied to create a mapping among controllable parameters, environmental param-
eters and energy consumption. To minimize the power consumed by cooling plants, this paper 
establish the optimization model with operation principle, it take all independent controllable 
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variables into consideration, including cooling load distribution. Gray wolf optimizer (GWO) is 
employed to find the near optimal solution for control setting under different cooling demand. 
Optimized energy consumption and savings of each cooling plant is also discussed in the paper.

Data description

A real air conditioning chilled-water system of a subway station in a southern city in 
China is chosen as the case system. The total construction area of the station is 18776 m2, the 
public area is 3342 m2, and the total length of platform door is 113 m. The characteristics of 
each equipment is listed in tab.1. This system consists of two chillers, four cooling towers, four 
cooling water pumps, and four chilled water pump. The lay-out of the cooling plants is illus-
trated in fig. 1. The case system is a variable primary flow chilled water system, the chillers are 
connected in parallel and then in series with other plant groups. The system has environment 
management and control system (EMCS), which can accomplish real-time data collection, 
monitoring, security protection and operating control. The control strategy of EMCS includes: 
the set-points of the supply and return chilled water temperature were adjusted according to the 
pressure difference of the user side, the cooling water temperature set-point was automatically 
tuned according to the outdoor wet bulb temperature, and the cooling tower approximation. The 
statistical data suggested that the coefficient of performance of the central cooling system with 
EMCS was improved by 2.9% in June. 

Table 1. Details of chillers

Equipment ID Characteristic

Chiller
WCC01 Nominal: cooling capacity = 813 kW, power = 116.9 kW, variable speed

WCC02 Nominal: cooling capacity = 968 kW, power = 138 kW, variable speed

Cooling 
water  
pump

CWP01, CWP02 Nominal: flow rate = 176 m3/h, power = 15 kW, variable speed

CWP03, CWP04 Nominal: flow rate = 106 m3/h, power = 7.5 kW, variable speed

Chilled  
water  
pump

CHWP01, CHWP02 Nominal: flow rate = 110 m3/h, power = 11 kW, variable speed

CHWP03, CHWP04 Nominal: flow rate = 66 m3/h, power = 7.5 kW, variable speed

Cooling 
tower CP01~CP04 Nominal: flow rate = 208 m3/h, power = 4.4 kW, variable speed

The data used in this research is collected from the EMCS during cooling period  
(6:30 a. m. to 23:30 p. m.) in summer. Because of the huge cooling load demand of the sta-
tion under summer climate condition, two chillers, two chilled water pump (one large and one 
small), two cooling water pump (one large and one small) and four cooling tower are running. 
Figure 2 presented the cooling load changes over a day. The cooling demand was volatile, even 
it sometimes can meet by one chiller, two chillers remain running to avoid start and stop repeat-
edly. As a result, the chillers always in partial load. The real-time cooling load is calculated: 

chw chwb chws( )eQ CM T Tρ= − (1)

where ρ [kgm–3] is the density of chilled water, C [kJkg–1℃–1] – the specific heat of chilled 
water, Mchw [m3h–1] – the flow rate of chilled water in the main pipe, Tchws [℃] – the chilled 
water supply temperature in the main pipe, and Tchwb [℃] – the chilled water return temperature 
in the main pipe.
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Modelling

Chilled water flow distribution

In the case system, each pump are not directly connected to each chiller. As a result, only 
the total flow can be adjusted. It is necessary to obtain the quantity relationship between total 
flow and branch flow. Figure 3 shows the connection of the chilled water pipe-line when mul-
tiple chillers are running in parallel. Based on the Bernoulli equation of constant total flow, the 
chilled water energy equation at points A and B in fig. 3 is calculated:

22
out outin in

in out2 2 AB
P vP vz z h
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+ + = + + + (2)
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where zin and zout are the heights of Points A and B in fig. 3, respectively, Pin and Pout – the 
pressure at the Points A and B, respectively, vin and vout – the velocities of chilled water through 
Points A and B, respectively, hAB – the energy loss of chilled water flowing from A to B, can 
be seen as the product of resistance coefficient SAB with the square of water flow rate M2. Due 
to the short pipe-line length of A1A2, A2A3, B1B2, and B2B3, the pressure difference between the 
two ends of each chiller can be considered to be equal, calculated by eq. (4) [9, 10]. Once the 

Figure 1. Lay-out of the central chilled 
water cooling system

Figure 2. The real-time cooling load over a summer day
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Figure 3. Schematic diagram of chilled  
water flowing through multiple chillers
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total chilled water flow rate is determined, the water flow rate of each branch is determined 
accordingly. In conclusion, the resistance coefficient is the main factor affect the chilled water 
flow rate at the branch pipe. 

Parallel operation characteristics of chillers

 Figure 4 is the operating characteristic 
curve of WCC01 and WCC02 in case system 
(chilled water supply temperature is 9 ℃, cool-
ing water inlet temperature is 30 ℃), where PLR 
represents the partial load ratio and COP is the 
coefficient of performance. It can be seen from  
fig. 4 that the COP increases with the increase 
of PLR, but the change ranges of the two 
chillers is different. 

If the back water temperature of chilled 
water of each chiller is the same, the load dis-
tribution is related to the branch flow rate Mchwj 
and chilled water supply temperature Tchwsj, the 
cooling load of each chiller Qj can determined by eq. (9). Since the branch flow distribution 
is only related to branch resistance coefficient, the cooling load distribution in this system is 
directly controlled by chilled water supply temperature difference between chillers:

cooling load
cooling capacity

PLR −
=

−
(5)

cooling load
energy consumption
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−
(6)
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( )chwj chwb chwsjjQ CM T T= − (9)

Parameter selection

Adjustable parameters in a cooling system include number of plants, chilled water 
flow, cooling water flow, temperature of the cooling water enter into the chillers, each chiller's 
chilled water supply temperature, chilled water supply and return water temperature difference, 
and cooling water temperature difference between inlet and outlet water. This study focus on 
parallel operation condition so that the quantity of operational plants is certain. To select ap-
propriate ones as control variables from above interrelated parameters, two commonly used 

Figure 4. The COP vs. PLR 
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correlation analysis methods were applied to measure the relevance degree between operating 
parameters and energy consumption.

Pearson correlation coefficient [11] is a statistical method to investigate the correlation 
between two variables, the Person correlation coefficient between X and y can be calculated:

( ) ( )

( ) ( )2 2

2 2

cov ,
,

X Y

X Y
XYX Y NX Y

X Y
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N N
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= =
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      

∑ ∑∑

∑ ∑∑ ∑
(10)

where cov is the covariance, σX and σY are the standard deviation of X and Y, respectively, and 
N is number of corresponding variables.

The gradient boosting decision tree 
(GBDT) [12] is one of the most representative 
ensemble learning algorithms which has high 
accuracy. It can output the relative importance 
of each feature after model training. The GBDT 
feature importance and the Pearson correlation 
coefficient of individual parameter are present-
ed in fig. 5. The most important parameters are 
cooling water flow and chilled water flow, rest 
of parameters exhibited close importance. Con-
sidering that regulating temperature is more im-
mediate than regulating temperature difference, 
select Mchw, Mcw, Tcwi, and Tchwsj as the control 
variables. Although cooling load distribution 

not directly involved, each different Mchw, Tchwsj corresponding to a different load distribution. 
The cooling load distribution is actually one of control variables. In addition, Tair, RH, and Qe 
were used as the environmental variables of the simulation model.

Algorithm selection

 The MLP and support vector regression (SVR) are most widely used neural network 
model in the simulation of HVAC system. The MLP originate from perceptron, it introduced one 
or more hidden layer based on a single layer perceptron neural network [13]. The training of MLP 
is to update weights by error back propagation. However, when the network reaches a certain 
depth, the network's characterization capability tends to be saturated, and the gradient disappears, 
which makes it impossible to train. The SVR is to map linear inseparable input data into a high 
dimensional linear separable feature space by kernel function and get the global optimal linear 
decision function [14]. It can avoid local optimization but the fitting effect depends on the choice 
of kernel function. Besides, when the training data size is great, it will be difficult to train.

He et al. [15] proposed a residual network based on ANN, introduced cross-layer 
connections between input and output, and divided the network into several residual units with 
the same architecture. If F(X) is the original output of the network, the actual output with the 
shortcut structure would be H(X) = F(X) + X, that is, the input is added to the original output. 
The input information of each module can be transmitted across layers by stacking the residual 
modules, thus transforming the traditional identity maps into residual learning. It can alleviate 

Figure 5. Influence value of different 
parameters on energy consumption
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the decline of network representational ability 
with deeper layers. Consequently, ResNet can 
be used for cooling plants modelling and may 
further enhance generalization capabilities and 
accuracy. 

The common structure of the ResNet is 
shown in fig. 6. There are two fully connected 
layers in each residual unit, the input X passes 
through the first fully connected layer, and then 
output the F1(X) processed by batch normaliza-
tion (BN) [16] and activation function, Relu, [17]. This output passes through the second fully 
connected layer and the batch normalization layer, then added to the input and passed to the 
activation function layer, finally output F2(X). The mathematical description:

( ) ( )1 1 1ReF X lu BN XW B = +  (11)

( )
[ ]

[ ]
[ ]

E x
BN x x

Var x Var x

γγ β
ε ε

 
 = • + −
 + + 

(12)

, 0
Re ( )

0, 0
x x

lu x
x
>

=  ≤
(13)

( ) ( ){ }2 1 2 2ReF X lu BN F X W B X = + +  (14)

where W1, W2, B1, and B2 are the weight and bias of the two fully connected layers, respectively, 
BN(⋅), Relu(⋅) – the batch normalization function and activation function, respectively, E[x], 
Var[x] – the mean and variance of x, respectively, and γ, β, and ε – the learnable reconstruction 
parameter of the normalization process.

Establishment and validation of cooling system model

The energy consumption of the cooling system is derived from its sub-components. 
Therefore, build the sub-model for components to integrated a whole system model will ob-
tain more accurate optimization result. Besides, the ResNet model of chilled water flow was 
established to calculate the branch flow rate through each chiller. The input parameters, output 
parameters and network structure (determined by experiment) of each sub model are presented 
in tab. 2. In the table, Mcw – the chilled water flow, Mchw – the cooling water flow, Tcwi – the 
temperature of the cooling water enter into the chillers, and Tchwsj – the single chiller's chilled 
water supply temperature, ΔTchw – the chilled water supply and return water temperature dif-

Figure 6. Structure of ResNet

Input FC
ResNet
block 1

ResNet
block 2 Output

FC BN Relu FC BN Relu

Table 2. Summary of component model

Model Inputs Outputs Number of  
residual blocks

Number of neurons in each 
fully connected layer

Chilled water flow Mchw Mchwj 2 16

Chiller Qj, Tchwsj, Tcwi Pchiller 4 64
Chilled water pump Mchw Pchwp 2 16
Cooling water pump Mcw Pcwp 2 16
Cooling tower Tair, RH, Mcw, Tcwi, Qc Pci 3 32
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ference, ΔTcw – the cooling water inlet and outlet water temperature difference, and Qc – the 
condensation heat, approximately equals to the sum of the energy consumed by chillers and 
the refrigeration quantity. Figure 7 illustrate the coupling relationship of the sub models. The 
simulation programs were all written by python, the ResNet model was set up based on Keras 
(a deep learning framework).

M Mc w1 c w2h h,
Chilled water
flow model

Chilled model
(WCC01)

Chilled model
(WCC02)

Cooling tower
model

T , Tc w 1 c w 2h s h s

Q1

Q2

Pchiller Qc

Figure 7. Schematic of the interrelationship between sub models

In this research, 25000 sets of sample data were selected to modelling and testing. 
Randomly scrambled the sample data and divided it into training samples and testing samples 
at a ratio of 7:3. In addition, the mean absolute percentage error (MAPE), mean absolute error 
(MAE), mean square error (MSE), and R2 (goodness of fit) were introduced to evaluate the 
model:
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where y is the measured value y^ – the predicted value, y ¯ – the mean value of the measured data, 
and ns – the number of samples.

As shown in fig. 8, the relative error of the chilled water flow model is less than 6%, 
which can meet the accuracy demand of cooling load distribution calculation. The prediction 
results of component models on 7500 test samples are shown in tab. 3, the MAE is in the 
range of 0.1~1.9, the MAPE is in the range of 1.4~9.6%, the MSE is in the range of 0.1~8.7, 
and the R2 is higher than 0.83, indicating that the simulation models fit the inputs and outputs 
data very well. The prediction result of the total energy consumption is shown in fig. 9, the R2 

score is 0.9885, demonstrated that the ResNet model can simulate the non-linear relationship 
among control parameters, environmental parameters and energy consumption with excellent 
accuracy.

In order to compare the performance of the ResNet with traditional artificial neural 
network, this study chose two commonly used artificial neural network MLP, SVR to model 
with the same data. As the prediction results presented in tab. 4, the RestNet outperforms others 
in both testing and training sets.
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Table 4. Training and testing results of ResNet, MLP, and SVR
Model MAE MSE MAPE R2

ResNet Testing 2.1381 12.0072 1.4613% 0.9885Training 2.0619 11.1463 1.3516%
MLP Testing 4.3956 31.0265 3.0444% 0.9703Training 4.3937 31.1673 3.0289%
SVR Testing 2.5016 13.0602 1.7568% 0.9875Training 2.3934 12.0330 1.6641%

 

Figure 8. Prediction results of chilled water flow

Table 3. Training and testing results of component models
Devices MAE MSE MAPE R2

Chilled water pump Testing 0.1008 0.0461 2.2034% 0.9764Training 0.0988 0.0448 2.1653%
Cooling water pump Testing 0.1762 0.1994 1.4748% 0.9963Training 0.1207 0.1549 1.1803%

Cooling tower Testing 0.2534 0.1259 9.5912% 0.8379Training 0.2083 0.0952 6.6978%
WCC01 Testing 1.8081 8.7063 1.6495% 0.9832Training 1.5001 5.3881 1.3414%
WCC02 Testing 0.2613 1.6990 1.6431% 0.9985Training 0.2147 1.3636 1.3266%
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Optimization model

Optimization model formulation

The energy consumption of the cooling system varied with the control parameters and 
environmental parameters. The established chilled-water cooling system model is used to con-
struct the overall optimization model. The model optimize the set-points of control variables to 
minimize the energy consumption while meet the cooling load requirement. Thus the objective 
function is defined as the sum of the chiller energy, cooling water pump energy, chilled water 
pump energy and cooling tower energy, eq. (12):

in total chw cw cwi chwsj( ) optimal( , , , )M P M M T T→

2 2 2 4
( ) ( ) ( ) ( )

total chiller chwp
1 1 1 1

cwp

n
j k l q

ct
j k i q

P P P P P
=

= = = =

= + + +∑ ∑ ∑ ∑
(19)

To ensure the calculated optimal results are in accordance with the actual operation, 
the constraints need to be satisfied are: 
–– In order to guarantee the chillers works, the chilled water supply temperature of each chiller 

should be within a certain range: 7 ≤ Tchws ≤ 12 °C.
–– To ensure the cooling tower works, the cooling water temperature enter into chillers should 

be within a certain range: max(27, Twb) ≤ Tcwi ≤ 32 °C.
–– Cooling water loop and chilled water loop need to meet heat transfer constraints.

Qc = Qe + Pchiller = CMcw(Tcwb – Tcwi)

Qe = CMchw(Tchwb – Tchws)

–– In order to ensure the normal operation of the water system, the cooling and chilled water 
flow rate of the main and branch pipes would be within a certain range.

	 55 ≤ Mchw ≤ 180 m3/h

	 90 ≤ Mcw ≤ 300 m3/h

	 50 Mcw1, Mcw1 ≤ 190 m3/h

	 55 Mchw1, Mchw2 ≤ 130 m3/h
–– In order to maintain indoor comfort, the chilled water supply temperature in the main pipe 

should meet the inequality [18]: 

	
chws

design

23.8 17 CeQ
T

Q
 

≤ − °  
 

Solution strategy of the optimization

The non-linear constrained optimization problem in this paper is too complex to solve 
by traditional mathematical programming method (such as Newton iterative method). The GA 
[19], PSO algorithm [20], differential evolution (DE) algorithm [21] and other swarm intelli-
gence algorithms have been successfully used to solve optimization problems in air condition-
ing systems. The GWO algorithm is a new swarm intelligence algorithm inspired by the gray 
wolf's predation behavior and has few parameters, strong stability, and a mechanism for adjust-
ing the convergence factor. Its accuracy and convergence speed have been proven to exceed 
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PSO in function optimization [22]. Therefore, the GWO is likely to obtain the nearer optimal 
solution and can be used for the dynamic optimization of the cooling system to maximize the 
energy-saving effect. 

The GWO guides individuals to search optimal based on the positions of the first 
three wolves α, β, and δ. The position of each gray wolf corresponds to a solution. The detailed 
implementation steps are as follows.

Step 1. Input the environmental parameters of the optimized working conditions, set 
the variation range of the control parameters. 

Step 2. Initialize parameters, set the population size p and the number of iterations r, 
and generate gray wolf population individuals randomly. 

Step 3. Calculate the fitness value of gray wolf individuals. Divide the gray wolf 
population into α, β, δ, and ω according to their fitness. 

Step 4. Update the position of the gray wolf individuals according to eq. (20), recalcu-
late fitness value, and re-select the optimal wolves α, β, δ. 

( )
( )
( )

( )

1

2,

1
3cr

α α α α

β β β β

δ δ δ δ

 = − = −
 

= − = − 
 = − = −

+ +
+ =

1 1

2 2

3 3 3

1 2 3

D C X X X X A D

D C X X X X A D

D C X X X X A D

X X X
X

(20)

where X is the current position of the gray wolf individuals, 
rs – the the current number of iterations, Xα, Xβ, Xδ – the 
current position of α, β, δ, Dα, Dβ, Dδ – the distance between 
the candidate wolf and α, β, δ, A1~A3 and C1~C3 – the 
synergy matrix, and X(rs + 1) – the next position of the gray 
wolf individuals.

Step 5. If the iterations has reached the maximum, 
output the optimal gray wolf individual position, otherwise 
return to Step 3.

The fig. 10 is the flowchart of the optimization with 
GWO, the optimization program is written and implemented 
in Python. In the optimization process, it is necessary to dis-
cretize the continuous variables. The discrete step of Mchw, 
Mcw, Tcwi, Tchwsj are 5 m3/h, 5 m3/h, 0.1 ℃, 0.1 ℃. The outer 
point penalty function method is introduced to convert the 
constraint condition into a penalty term. So that the fitness 
value equals to the sum of the penalty term and the simulat-
ed total energy consumption of the system, eq. (21):

totalfitness punishP= + (21)

Optimization results and discussion

To demonstrate the energy saving effect of the pro-
posed method, 30 continuous points at a typical summer 
cooling day have been selected to show the optimization Figure 10. Flowchart of GWO 

algorithm
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process. Figure 11 present the environmental parameters of the selected points, the cooling load 
changes within the range of 60-90% of the rated capacity. For each point, optimization model 
is established and solved by GWO. After several experiments, the number of iterations and 
populations are set as 200 and 50, respectively.

The six points with clear difference in cooling load were chosen to verify the 
performance of GWO. As shown in fig. 12, all optimization process reached convergence in 
200 iterations. In addition, GA, PSO, and GWO were used to solve the optimization model 
of each point, and it was repeated 30 times. The statistical data of optimized system energy 
consumption by different optimization algorithm are listed in tab. 5. The lowest energy 
consumption in multiple calculations of three algorithms access to each other, but the deviation 
of GWO is smallest at every point. Together, the results indicated that GWO performs superb 
convergence on the cooling system optimization problem. 

Figure 11. Environmental parameters  
of selected points

Figure 12. Fitness vs. iterations

The optimization results of operating parameters at 30 points are shown in fig. 13, 
and the corresponding optimized energy consumption of cooling plants and system are pre-
sented in figs. 14 and 15 (the simulated value represent the energy consumption predicted by 
ResNet model). The optimized energy consumption of cooling water pump significantly de-
creased with the decrease cooling water flow. The chilled water flow is associated with indoor 
comfort level, excessively low will cause the increase of chilled water back temperature. As 
a result, the chilled water flow and the energy consumption of chilled water pump have no 
significant decrease after optimization. The optimized energy consumption of cooling tower 
show a decreasing trend and it shares a low proportion of total power, it likely to sacrifice 
the energy-saving space of cooling tower for overall optimal energy efficiency. Chiller is the 
main energy-consuming equipment in chilled-water cooling system, reduce the energy con-
sumption of chillers is crucial for the whole system. As shown in figs. 14 and 15, the change 
of the chiller energy consumption was same as that of the total energy. The optimized cooling 
water inlet temperature show a decreasing tendency, the chilled water supply temperature and 
the cooling load distribution has changed as presented in fig. 13, therefore, the average chiller 
energy consumption reduced by 8.14%. 
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Table 5. Energy consumption [kW] after optimization by GWO, GA, and PSO
Cooling load [kW] GWO GA PSO

1511
Minimum 234.63 235.6 234.63
Maximum 235.61 242.65 236.13

Mean 234.84 236.87 234.70

1480
Minimum 223.65 223.65 223.65
Maximum 223.75 224.98 234.43

Mean 223.65 223.81 226.28

1342
Minimum 210.49 210.49 210.49
Maximum 210.73 218.00 218

Mean 210.50 210.84 211.06

1207
Minimum 203.94 203.94 203.94
Maximum 204.11 209.50 209.8

Mean 203.94 204.48 206.18

1117
Minimum 195.79 195.8 195.79
Maximum 199.83 199.82 206.66

Mean 196.06 198.34 197.04

1038
Minimum 180 180 180
Maximum 180.34 183.53 188.54

Mean 180.06 180.08 180.31
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Figure 13. Operating parameters settings before and after optimization
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Figure 14. Cooling plants energy consumption before and after optimization

To analysis the impact of cooling load distribution on energy saving, the optimization 
model with equal chilled water supply temperature of all chillers (Tchws1 = Tchws2) was formulated 
and solved by GWO at the same 30 points. As shown in figs.14, and 15, and tab. 6, the energy 
consumed by accessories (cooling towers, cooling water pumps and chilled water pumps ) 
is very close to that of unequal chilled water temperature method. However, the energy-sav-
ing rate of chillers is significantly decreased. As a result, the total average energy-saving rate 
dropped from 10.45-7.9%.

Table 6. Average energy saving rate after optimization by two methods
Control variables Cooling system Chillers Accessories

Mchw, Mcw, Tcwi, Tchws1, Tchws2 10.45% 8.14% 27.52%
Mchw, Mcw, Tcwi, Tchws(Tchws1 = Tchws2) 7.90% 5.37% 26.67%

Figure 15. Total energy 
consumption before and 
after optimization
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Conclusion

This study established a optimization model of a chilled-water cooling system with mul-
tiple chillers by ResNet, the MAPE of the energy consumption simulation model in testing sets 
are 1.4613%, and its predict accuracy is higher than MLP, SVR, it has good generalization ability. 
To realize the energy-saving operation of the whole system, the GWO was introduced to solve the 
optimization model. The optimization results on typical parallel operation conditions showed a 
10.45% energy savings of energy consumption even though the original operating condition has 
been optimized. However, the energy savings of chillers is severely reduced when the chilled wa-
ter supply temperature of all chillers are equal, which indicated that the cooling load distribution 
is of great significance for the energy conservation of the parallel operation system. 
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