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In this paper, an aero-engine exhaust gas temperature prediction model based on 
LightGBM optimized by the chaotic rate bat algorithm is proposed to monitor ae-
ro-engine performance effectively. By introducing chaotic rate, the convergence 
speed and precision of bat algorithm are improved, which chaotic rate bat algo-
rithm is obtained. The LightGBM is optimized by chaotic rate bat algorithm and 
it is used to predict exhaust gas temperature. Taking a type of aero-engine for 
example, some relevant performance parameters from the flight data measured by 
airborne sensors were selected as input variables and exhaust gas temperature as 
output variables. The data set is divided into training and test sets, and the CRBA-
LightGBM model is trained and tested, and compared with ensemble algorithms 
such as RF, XGBoost, GBDT, LightGBM, and BA-LightGBM. The results show that 
the mean absolute error of this method in the prediction of exhaust gas temperature 
(after normalization) is 0.0065, the mean absolute percentage error is 0.77% and 
goodness of fit R2 has reached to 0.9469. The prediction effect of CRBA-LightGBM 
is better than other comparison algorithms and it is suitable for aero-engine con-
dition monitoring.
Key words: aero-engine, exhaust gas temperature prediction, LightGBM, 

improved bat algorithm, flight data

Introduction

The exhaust gas temperature (EGT) of aero-engine is one of the main indicators of 
the aero-engine condition monitoring. As the service time increases, the performance of the 
aero-engine will decline and the EGT will rise accordingly. When the EGT exceeds a certain 
threshold, it may seriously affect the normal operation of the aero-engine and the flight safety 
of the aircraft [1]. Therefore, the prediction of EGT can effectively monitor engine performance 
degradation and reduce aircraft failure rates.

Aero-engine is a complex non-linear time-varying system, the EGT varies with the 
different aero-engine working condition. Up to now, there is no definite mathematical model 
to describe the change law [2]. It is an effective method to predict the EGT by data mining the 
historical flying parameter data collected based on the airborne sensors. In the past few years, a 
series of data-driven methods based on machine learning have been proposed for the prediction 
of EGT [3-7], and have achieved certain results. Artificial neural networks [3] was applied to 
predict the EGT of CFM56-7B engines. Zhong et al. [4] and Ding et al. [5] introduced time 
aggregation operators and used process neural networks to predict EGT. Kumar et al. [6] used 
auto-regression and moving average technology to predict engine exhaust temperature. On the 
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basis of the process neural network, Jun et al. [7] used the improved drosophila optimization 
algorithm to optimize the relevant parameters and improved the prediction effect. However, 
there are still problems such as low accuracy and low prediction efficiency, and the prediction 
performance of neural network has a great correlation with the number of samples and the set-
ting of hyper parameters.

On account of excellent performance of higher accuracy and shorter running time than 
individual learner [8, 9]. Ensemble learning has been widely used in classification and regression 
in the field of machine learning in the past 20 years. However, the new achievements of ensem-
ble learning are very limited in the research of aero-engine. An improved Adaboost model [10] 
was used to aero-engine PHM, and an improved random forest algorithm [11] was applied to the 
aero-engine maintenance level decision. The LightGBM is an ensemble algorithm based on deci-
sion tree published by Microsoft Research Asia [12], which has unique advantages in processing 
non-linear models, supports efficient parallel training, and has high accuracy and efficiency in 
regression and classification. In the past two years, research results can be found in the fields 
of medicine [13], economy [14], agriculture [15], and meteorology [16]. It is worth noting that 
the prediction effect of LightGBM is related to its own adjustment parameters. The selection of 
parameters such as Learning_rate and Max_depth directly affects the prediction accuracy and 
training speed of the model. At the same time, manual adjustment of parameters takes a long time 
and may still not be able to make LightGBM has the best predictive performance.

In this paper, the chaotic rate bat algorithm (CRBA) is studied. To further improve the 
prediction performance, the mean absolute error (MAE) of the predicted value is used as the 
objective function optimize the Learning_rate and Max_depth of LightGBM. The LightGBM 
prediction model optimized by CRBA is established. The prediction results of several ensemble 
learning methods are compared. The study provides an application reference for aero-engine 
condition monitoring.

Theory

The LightGBM model

Decision tree

As a method of classification and regression, decision tree has a tree structure, and 
mostly uses binary trees [14]. On each leaf node, according to the test results of the judgment 
condition, the data set is distributed to two or more child nodes, and the child nodes continue to 
split until the leaf nodes are generated, including the final data category [17]. 

However, the problem of overfitting will 
be caused by the transition of decision tree 
growth, and the classification performance of 
unbalanced samples is poor, and the informa-
tion gain tends to be biased to the feature of 
large sample size. Figure 1 shows the basic 
structure of a decision tree.

Gradient boosting

Gradient boosting is a machine learning 
technique used for regression and classification 
problems. And it produces a prediction model 
in the form of a collection of weak prediction Figure 1. The basic structure of the decision tree
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models (usually decision trees). The idea of gradient boosting is to iterate the variables at one 
time. During the iteration process, the sub-models are added one by one [17, 18], and at the 
same time the cost function is continuously reduced.

The model can be represented by the following expression:

0 0 1 1( ) ( ) ( ) ( )m m mF x f x f x f x= ∂ + ∂ + ⋅⋅⋅ + ∂ (1)

where fi(X) is the sub-model in each iteration and L[Fm(x), Y] – the cost function, and Y – the 
observed value. With the gradual addition of the sub-model, the cost function will decrease 
along the variable gradient with the second highest information content:

1[ ( ), ] [ ( ), ]m mL F x Y L F x Y−< (2)

Gradient boosting decision tree

Gradient boosting decision rete (GBDT) is an algorithm for data classification or re-
gression by using a linear combination of primary functions and continuously reducing the 
residuals generated during training process. In brief, GBDT is equivalent to a decision tree al-
gorithm using gradient boosting. It is a decision tree algorithm with boosting iteration process, 
which has the advantages of not easy overfitting and good training effect. The GBDT produces 
a weak classifier in each round of iterations, and each classifier is trained on the basis of the re-
sidual of the previous round [12]. In multiple rounds of iterations, the accuracy is continuously 
improved by reducing the deviation.

The LightGBM

The LightGBM, as an efficient implemen-
tation algorithm of GBDT, is good at process-
ing high dimensional data and improving cal-
culation efficiency, while ensuring high model 
accuracy [12]. As shown in fig. 2, the traditional 
decision tree algorithm grows the tree through 
a level-wise strategy and treats the leaves of the 
same layer indiscriminately, bringing unneces-
sary overhead. In order to reduce the dimension 
of training data, the decision tree in LightGBM 
grows by leaf-wise strategy. Each time from 
all the leaves, find the one with the largest split 
gain, and then split to complete a cycle. In or-
der to avoid overfitting when the sample size is 
insufficient, it is necessary to increase the max-
imum depth limit of the tree.

The main parameters for implementing the control and optimization of the LightGBM 
algorithm are: Num_leaves, which is used to set the number of leaves that make up each tree. 
Setting too large will lead to overfitting while improving accuracy. Learning_rate, the learning 
rate, whose setting is mainly related to the running time. Max_depth, it specifies the maximum 
learning depth or the upper limit of the number of growth layers per tree, which is the main 
parameter that determines the prediction accuracy, Min_data, the minimum amount of data in 
a leaf, Feature_fraction, which selects features that account for the total number of features, 
scaling from 0 to 1. Bagging_fraction, it plays the role of random selection of data, indicating 

Figure 2. The generation strategy of  
tree in LightGBM

Level-wise Leaf-wise
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the proportion of selected data in the total data volume, and the value is also between 0 and 1. 
Otherwise, Max_depth and Min_data are used to prevent overfitting, and Feature_fraction and 
Bagging_fraction are used to control the ratio of the selected total feature number.

Although the LightGBM framework performs very well in all aspects, if the param-
eters of the model are not properly selected by the user, it will lead to problems such as over-
fitting or underfitting and insufficient prediction accuracy. It is necessary to select the global 
optimal hyper parameter combination in a short time.

Chaotic rate bat algorithm

Bat algorithm

Cambridge University scholar Yang [19] proposed a new heuristic swarm intelli-
gence optimization algorithm – the bat algorithm (BA) in 2010. The algorithm idealizes the 
echolocation of bats. By simulating the biological behavior of bat populations using ultra-
sonic reflection in space to avoid obstacles and search and capture targets. Iteratively updates 
the speed, position, and optimal fitness function of bat population value [19, 20], and then 
choose the optimal solution until the target stops or the conditions are met, and finally the 
best solution is obtained. 

The position of each bat in the search space corresponds to a solution in the solution 
space, with corresponding speed and fitness function. The bat population generates a new solu-
tion set by updating the emission frequency, pulse rate and loudness, and gradually evolves to 
a state includes a global or near-optimal solution. The mathematical expression of the iteration 
process can be written:

min max min( ) [0, ,1]if f f f ζ ζ= + + ∈ (3)

1 1
best( )l l l

i i i iV V X X f− −= + − (4)

1 1l l l
i i iX X V− −= + (5)

where fi is the emission frequency of the bat, i, fmin, and fmax are to the minimum and maximum 
emission frequency of the entire population, respectively, ξ – the random variable and its range 
is limited to [0,1], X li and V li – the position and speed of the bat i in search space in the lth itera-
tion ( i = 1, 2,..., N), and Xbest – the optimal global position in the ith iteration.

When the algorithm converges to the optimal solution area, the optimal position is 
perturbed to achieve the purpose of local search again and ensure the ergodicity of the optimal 
solution. The update equation:

new best
lX X Aα= + (6)

where α is a random number in the interval [–1, 1] and Al – the average loudness of this bat 
population [21].

On the basis of eq. (6), the pulse rate Ri and the loudness Ai are updated as the iteration 
progress. The update equation:

1l l
i iA Aω+ = (7)

[ ]1 0 1 exp( )l
i iR R tβ+ = − − (8)

where β is constant as well as ω, and β >0, 0 < ω < 1.
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In summary, BA has the advantages of simple structure, few input parameters, and 
good readability. It realizes the conversion between global search and local search of dynamic 
control [22], and has been shown to perform better than unconstrained optimization Genetic 
algorithms and particle swarm optimization algorithms [21] and it have a wide range of appli-
cations to expand [23, 24]. However, the algorithm is easy to reach local optimum and it has 
disadvantages of low convergence accuracy as well as slow convergence speed.

In view of these shortcomings, scholars have studied and improved them. For exam-
ple, Rahimi et al. [25] proposed an adaptive learning heuristic bat algorithm to enhance the 
convergence accuracy of BA. Dinh et al. [26] merged uniform mutation and Gaussian mutation 
mechanism to perform selective mutation update on the bat position, which improves the opti-
mization accuracy and convergence speed of the improved algorithm. Ye [27] proposed to use 
chaos optimization help BA achieve better ergodicity and avoid local optimization. Although 
the aforementioned literatures have improved BA to some extent, they are all optimizations to 
update the equation of bat position and speed, without considering the impact of pulse rate and 
loudness on optimization of model. However, these two parameters are the trigger condition 
and important measurement parameters for eq. (6) to perform local traversal optimization. The 
ability of the bat population locate the echo is controlled by the pulse rate and loudness [28]. 
Thus, the optimization of pulse rate and loudness is significant and valuable to increase the 
overall efficiency of the algorithm.

Optimization strategy of chaotic pulse rate

Equations (7) and (8) are used to update and iterate the pulse rate in BA, that is Ri
l+1 ≤ R0

i,  
Ai

l+1 ≤ A0
i. The initial value selection of R0

i and A0
i will directly affect the ergodicity of the local 

search of the algorithm. However, due to the manual selection of the initial value, it has some 
randomness, which may also cause time-consuming and laborious troubles, which is not con-
ducive to the optimal performance of the algorithm. In order to avoid the previous problems 
and improve the optimization performance of the algorithm, this paper improves the pulse rate 
Rl+1 and the loudness Ai

l+1.
1 2

0

0

( ) sin( )
2.3

0.7
0.9

l l l
i i iR R R

R
A

τ
τ

+ = π


=


=
 =

(9)

where Ri
l+1 is the chaotic pulse rate, τ – the it-

eration parameter of the pulse rate, and R0 and 
A0 are the pulse loudness value and the initial 
loudness, respectively.

Figure 3 shows that the chaotic pulse rate 
Ri

l+1 varies from 0.5-1 and is controlled by sinu-
soidal inverse mapping, therefore, it has chaot-
ic ergodicity. Equation (9) makes the pulse rate 
have both sensitivity to the initial value and 
certainty of the chaotic variation range, and can 
avoid falling into a local optimal value. Mean-
while, the global search ability of the algorithm 
can be improved. Figure 3. Value range of chaotic pulse rate
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Confirmatory analysis

Genetic algorithm (GA), particle swarm optimization algorithm (PSO), glowworm 
swarm algorithm (GSO), and BA are selected as contrast function, and the test functions are 
used for comparative simulation test the optimization performance of CRBA. Table 1 lists the 
three test functions.

Table 1. Function expressions and their characteristics

Function Expression Search space Global minimum

Sphere 2

1
( )

n

i
i

f x x
=

= ∑ [–100, 100]d xi = 0, f(x) = 0

Griewank ( ) ( ){ }2

1
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n

i i
i

f x x x
=

 = − π + ∑ [–600, 600]d xi = 0, f(x) = 0

Rastrigin ( ) 2

1 1

1 cos 1
4000

nn
i

i
i i

x
f x x

i= =

 
= − + 

 
∑ ∏ [–5.12, 5.12]d xi = 0, f(x) = 0

In order to test the effectiveness of the improved algorithm and compare it with the 
optimization performance of other algorithms, the experimental algorithms have been stan-
dardized. Set the maximum number of iterations i to 1000 and the population size N to 50. 
The test function and search space are determined according to the range of each test function 
in tab. 1, in order to reduce the influence of the setting of the population parameters on the 
performance of BA and other algorithms. Set the pulse rate and loudness of BA and CRBA to 

Figure 4. Convergence  
curves of test function; 
(a) Sphere function,  
(b) Griewank function, and  
(c) Rastrigin function
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be consistent to avoid the influence of parameter setting on the optimization performance, as 
shown in eq. (7), R0 = 0.7, A0 = 0.9. The initial position of each algorithm is set as: the maximum  
Pop_Max = 15 and the minimum Pop_Min = –15, and the initial speed is a random value which 
generates randomly on the basis of the initial position. 

Figure 4 shows the test results of each algorithm. As can be seen from fig. 4, the GA 
and BA have faster convergence speed among all the algorithms tested, but the convergence 
accuracy of the two algorithms is not as good as that shown in fig. 4(a). From the results of  
fig. 4(b), it can be found that the convergence accuracy of PSO and GSO is slightly inferior. The 
analysis of results in fig. 4(c) reflect that the convergence speed of CRBA is the fastest when 
the convergence accuracy is roughly the same. Therefore, compared with other four algorithms, 
CRBA has both higher convergence accuracy and faster convergence speed, and has the best 
comprehensive performance.

Parameter optimization of  
LightGBM based on CRBA

In order to improve the prediction performance of LightGBM, the parameters need 
to be adjusted. There are two important parameters related to prediction performance: Learn-
ing_rate and Max_depth, both of which are the main factors influencing the running time and 
accuracy of the model [18].

Table 2. Model parameter settings
Parameter Value/Option Parameter Value/Option

Num_leaves 31 Min_data 30
Bagging_fraction 0.6 Num_Iteration 100
Application Regression Boosting GBDT

The other parameter settings mentioned in Section The LightGBM of this article are 
shown in tab. 2. Since boosting defaults to GBDT, Feature_fraction is not set. Select MAE as 
the measure of prediction accuracy:

1

1ˆ ˆ( , )
N

i i
i

MAE y y y y
N =

 = − 
 
∑ (10)

where N is the total number of samples in the test set, yi – is the ith observation sample value, 
and ŷi is the ith prediction sample value.

With MAE as the target function, the CRBA algorithm is used to optimize the Learn-
ing_rate and Num_leaves and find the optimal parameters ultimately. The steps of optimization 
are:
–– Step 1. The bat population parameters of CRBA: maximum Pop_Max and minimum Pop_

Min of the initial position are randomly initialized, and the corresponding population posi-
tion Xi and speed Vi are generated accordingly. Pulse rate (R0 = 0.7), loudness (A0 = 0.9), al-
gorithm dimension (DIM = 2), pulse rate iteration parameters (τ = 2.3) and frequency range 
are set. And set the range of Learning_rate (L) to [0.001, 0.5], the range of Max_depth (M) 
to [2, 31], and the bat individual Xi = (L, M) corresponds to the population position.

–– Step 2. Input the training set samples, and then the algorithm calculates and generates the 
parameter values (L, M), from which the objective function value of each bat in the first 
iteration can be obtained, and find the optimal value, record the optimal value of the bat 
individual location Xbest.
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–– Step 3. The bat population calculates the emission frequency fi of each bat within the number 
of iterations by eq. (3). The motion speed a is obtained by eq. (4), and the position b in the 
search space is updated according to eq. (5), and perform out-of-bounds processing on speed 
and position.

–– Step 4. Generate uniformly distributed random numbers rand and ε. If rand > Ri, a new 
global optimal solution is needed, which is generated by ε perturbing the current solution. 
And perform out-of-bounds processing on it and then calculates the new objective function 
value. 

–– Step 5. Generate a uniformly distributed random number rand. If the random number rand 
< Ai and f(X) < f(Xbest), accept the new solution generated in Step 4, and update the loudness 
and chaotic pulse rate according to eqs. (7) and (9).

–– Step 6. Sort the objective function values of all bat individuals, find the optimal value in the 
current population, and record the position of the optimal value.

–– Step 7. Repeat Steps 4-6 until the set optimal solution conditions are satisfied or the algo-
rithm reaches the maximum iterations.

–– Step 8. Output global optimal value (i. e. minimum MAE value) and optimal solution (i. e. 
optimal CRBA-LightGBM parameter value).

Experiments and discussion

Flight data selection and preprocessing

Since the change of aero-engine EGT depends on the working condition of the ae-
ro-engine and external conditions, it is necessary to select flight data that can characterize the 
EGT. The data format and its source is shown in tab. 3.

Table 3. Flight parameter format of a type of aero-engine

Parameters Contents Parameters Contents 

N1 [%] Low compressor rotor speed PLA [°] Throttle angle

N2 [%] High compressor rotor speed Wf [kg] Fuel flow

T6 [°C] Gas temperature after turbine Pm [MPa] Oil pressure

T9 [°C] Exhaust gas temperature T1 [°C] Inlet temperature

P6 [kPa] Pressure after turbine

The statistical product and service solu-
tions software is used for factor analysis, and 
the most influential factors are selected accord-
ing to the decreasing condition of the eigenvalue 
and the cumulative variance contribution rate, 
as shown in fig. 5. After analysis, the first five 
factors with cumulative variance contribution 
rate of 95.98% are selected for EGT prediction.

Finally, high compressor rotor speed, N2, 
low compressor rotor speed, N1, fuel flow, Wf, 
and inlet temperature, T1, are selected as input 
parameters. Figure 5. Scree plot
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When extracting the aforementioned characteristic parameters, the following prepro-
cessing is performed:
–– Outlier rejection. In order to avoid affecting the classification effect, for points that deviate 

significantly from the normal range of the parameters and the remaining parameters are 
normal at the same time point should be eliminated.

–– Synchronous processing. The flight data recorder records 4 frames of flight data in 1 second, 
but due to the different sampling frequency of different parameters, they are not synchro-
nized in time, which requires synchronization processing. The processing method is to av-
erage the parameters within 1 second.

–– Data normalization. Due to the different measurement accuracy and dimension of the selected 
parameters, as well as the need for data confidentiality, all parameters are normalized to 0 and 1.

Table 4. Processed sample data
Data points N1 N2 T1 Wf T9

1 0.9828 0.9939 0.4820 0.8133 0.9575
2 0.9802 0.9927 0.4740 0.8130 0.9550

⋮
500 0.0495 0.0992 0.8599 0.0240 0.4325
501 0.0513 0.1034 0.8556 0.248 0.4325

⋮

999 0.1880 0.2186 0.6113 0.2982 0.5750
1000 0.1830 0.2126 0.6108 0.2902 0.5736

According to the aforemen-
tioned principles and processing 
methods, a total of 1000 sample 
data are obtained from 5 sorties. 
Part of the data has been shown 
in tab. 4. Divide the previous data 
into training set and test set in a 
ratio of 4:1. And the prediction 
flow chart of the prediction model 
is shown in fig. 6. 

Model evaluation index

The MAE value can directly describe the error between predicted value and observed 
value, thus MAE could be introduced as one of the evaluation indexes. However, since the pre-
dicted value is normalized, the MAE value will be too small, and there will be small difference 
between MAE value of different model. Therefore, the mean absolute percentage error (MAPE) 
is introduced in order to intuitively reflect the actual prediction error:

1

ˆ1ˆ( , ) 100%
N

i i

i i

y y
MAPE y y

N y=

−
= ×∑ (11)

Figure 6. The CRBA-LightGBM EGT prediction flow chart
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Goodness of fit R2 is an effective index to measure the degree of fit between regression 
curves and observed values. This paper also introduces goodness of fit to analyze the perfor-
mance of each prediction model. The calculation equation of goodness of fit R2 is shown:

2

2 1

2

1

ˆ( )

( )

N

i
i
N

i
i

y y
R

y y

=

=

−
=

−

∑

∑
(12)

Aero-engine EGT prediction

In this part, the prediction performance of the proposed algorithm will be discussed 
and we will compare it with other ensemble algorithms such as random forest (RF), gradient 
boosting tecision tree (GBDT), extreme gradient boosting (XGBoost), BA-LightGBM, and 
LightGBM. The first 800 sets of sample data are trained, and then the next 200 sets are used 
for testing.

Explanation of the parameter setting of the comparison algorithm: all the prediction 
algorithms involving LightGBM have the same parameter setting except Learning_rate and 
Max_depth. For LightGBM without parameter optimization, For LightGBM without parameter 
optimization, set Learning_rate = 0.1 and Max_depth =10 by default. The XGBoost prediction 
model: adjust Max_depth = 6, Eta = 0.2, and select default values for the remaining parameters. 
GBDT model: Adjust Max_depth = 6, and select default values for the remaining parameters. 
RF prediction model: adjust Ntree=100, Max_features = 2, and select default values for the re-
maining parameters.

Figure 7 shows the prediction results of the six algorithms. In the case of 800 training 
samples and 200 test samples, the predicted value of the normalized EGT is compared with 
the observed value. By analyzing the results of fig. 7, the predicted values of the six methods 
can basically follow the change trend of normalized EGT. According to fig. 7(b), between data 
points 110 and 115, the predicted values of the six methods are basically consistent with the ob-
served values, and the predicted values will fluctuate relatively from the 117th data point, which 
may be related to the imbalance of training sample.

The relative error of the prediction model is shown in fig. 8. Table 5 shows the pre-
diction performance of the six prediction models, including MAE, MAPE, R2, and running 
time. Among fig. 8(b) shows that although each prediction model has errors in general, the 
relative error of CRBA-LightGBM has the minimum fluctuation. Furthermore, tab. 5 and fig. 9 
both show more accurately and intuitively that CRBA-LightGBM has the smallest MAE value, 
followed by BA-LightGBM and LightGBM, the MAE values of the two are relatively close. 
As the predicted value is normalized, MAE value is close to 0, consequently, the comparison 
between MAPE values can obviously reflect that the prediction error of CRBA-LightGBM 

Table 5. Model prediction performance

Prediction model CRBA-
LightGBM

BA-
LightGBM LightGBM XGBoost GBDT RF

MAE 0.0065 0.0076 0.0092 0.0106 0.0121 0.0162
MAPE [%] 0.77 1.03 1.35 2.32 2.49 2.92

R2 0.9469 0.9212 0.8928 0.8796 0.8501 0.8023
Running time [s] 12.89 14.14 10.72 17.08 21.22 11.39
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Figure 7. Comparison of 
EGT prediction results; 
(a) prediction results,  
(b) local magnification 
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between the predicted value and 
the observed value; (a) relative 
error, (b) local magnification
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model is the smallest, which indi-
cating that CRBA-LightGBM has 
the highest prediction accuracy. Fur-
thermore, the prediction accuracy 
of LightGBM is generally higher in 
the ensemble algorithm. Meanwhile, 
CRBA-LightGBM has the largest R2 
value, which is closest to 1, indicat-
ing that it fits the observations best 
overall. From the perspective of run-
ning time, LightGBM has the short-
est running time, followed by RF. The 
running time of CRBA-LightGBM is 

close to RF. In summary, CRBA-LightGBM maintains a high prediction accuracy, while also 
has a short running time. Therefore, it can be concluded that LightGBM optimized by CRBA is 
suitable for EGT prediction.

Conclusion 

In this paper, we propose an aero-engine EGT prediction model based on LightGBM 
optimized by CRBA algorithm, which can predict the EGT based on the flight data from the 
airborne sensors.

By introducing sinusoidal inverse mapping to improve the pulse rate, the BA is op-
timized. The optimized BA has higher optimization accuracy and faster optimization speed. 
The MAE is used as the objective function, and the improved BA is used to optimize two 
important parameters in LightGBM. Compared with BA-LightGBM, LightGBM, XGBoost, 
GBDT, and RF, the prediction effect of LightGBM has been better than XGBoost, GBDT, and 
RF models, and the LightGBM optimized by BA and CRBA can further reduce MAE, and 
CRBA-LightGBM can reach the minimum MAE and MAPE, and it has the best fit to observed 
values as well as a higher efficiency. Consequently, it can be concluded that CRBA-LightGBM 
is applicable to aero-engine EGT prediction.
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Figure 9. Model prediction performance comparison
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Al 	 – loudness
A0 	 – initial loudness
Bagging_fraction 	– proportion of selected data in  

  		  total data volume
Eta 	 – learning rate in XGBoost
fi 	 – emission frequency of the bat i,
fmin 	 – minimum emission frequency
fmax 	 – maximum emission frequency
fi (X) 	– sub-model in each iteration
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