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In thermal science, chemical and mechanics, the non-linear reaction-diffusion

model is very important, and an approximate solution with high precision is always

needed. In this article, the barycentric interpolation collocation method is pro-

posed for this purpose. Numerical experiments show that the proposed approach

is highly reliable.
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Introduction

The paper is devoted to the numerical solution of a class of non-linear reaction-diffu-
sion models:
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with the following initial conditions and boundary conditions:
u(x,0) = f,(x),v(x,0) =gy (x), a<x<b
u(a,t) = f,(t),u(b,t)y=f,(t), t=>0 2
v(@a,t) = g, ().v(b.H) = g, (), t20

where d; > 0 and d> > 0 are diffusion coefficients and may also include the parametrizations of
turbulence.

The reaction-diffusion model has wide applications in thermal science, chemical and
mechanics [1-5]. There are some analytical and numerical methods [6-10] for solving the advec-
tion-reaction-diffusion system, among which the barycentric interpolation collocation method
[11-17] is a high precision method. In this paper, we mainly employ the Lagrange barycentric
interpolation collocation method to solve the reaction-diffusion model (1).
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The barycentric interpolation formula of the eq. (1)

We give two initial hypothesis functions Uo, Vo and construct the following linear iter-
ative format:
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Next, we give a meshless barycentric interpolation collocation method of eq. (3).
Let a<x <X, <--<Xy <b, 0<t, <t, <---<ty <T.The barycentric interpolation
form of function u(x, t) can be expressed:
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where £i(X) is the barycentric interpolation basis function of M nodes on interval [a, b], 7;(t) is
the barycentric interpolation basis function of N nodes on interval [0, T].
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Using the method of [11-12, 15], eq. (3) can be written in following partitioned matrix
form:
D(®) _g,0>%) 0 {un} _ [diag[hl (Up1>Vo )]} )
0 D(O’l) — d2 D(2,0) Vi diag[h2 (Un—p> Vo))

where DOD, D02 and diag[hi(Un_1, Vn-1)] are explained in [11-12, 15]. In this paper, we use
displacement method to impose the initial boundary conditions. The detailed procedure can be
found in [15].
Numerical experiments

Experiment 1. We consider the following reaction-diffusion model [3]:

ou_ou
—=a—-w?+a,(l-u
at laxz 2( )

N OV, ©
E:bly+uv —(a, +b,)v
with the following initial conditions:
100 T(X—50) 100 T(X—50)

u(x,0)=1-0.5sin 00 V(X,0)=0.25sin , xe[—SO,SO] @)

and the boundary conditions:
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u(=50,t) =u(50,t)=1, v(-50,t)=v(50,t)=0, te[0,400] (8)

In tab. 1, we analyze the influence of b1, by on u and v at t = 100, M = N = 20, with
the given parameters a; = 1.0, a, = 0.064.

Figures 1-3 show the numerical solutions of U and v obtained by the present
method, where b; = 0.01, b, = 0.062, M = 20, N = 20.

Table 1. Comparison of numerical solutions at t = 100 for Experiment 1 (M = N = 20)

X u(x, t) V(X, t) u(x, t) V(X, t) u(x, t) V(X 1)
b1 =0.01 b2 =0.062 bi1=05 b2 =0.062 b1 =0.01 b2=-0.3

=50 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
=25 0.5493 —0.0012 0.5156 —0.0090 0.5153 —0.0024

0 0.0006 0.1575 0.2454 0.3662 0.2805 0.2998
25 0.5493 —0.0012 0.5162 —0.0095 0.5153 —0.0024

50 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
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Figure 2. The numerical solution for Experiment 1 at a1 = 1.0, a2=0.5
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Numerical solutions of u
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Figure 3. The numerical solution for Experiment 1 at a1 = 0.001, a2 = 0.064

Experiment 2. Consider the following Brusselator model [4, 5]:

2
M 04T g ausutval
ot ox?
o 2 ®
—=10" —\2/+3.4u —u?v
OX
with the following initial conditions:
u(x,0)=0.5,v(x,0)=1+5x, xe[0,1] (10)
and the boundary conditions:
u, (0,t)=u, (1,t)=0, v, (0,t)=v,(1,t)=0, te [0,1] an

The results of Experiment 2 are given in fig. 4.
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Figure 4. Numerical solutions obtained by the present method for Experiment 2

Experiment 3. Consider the Schnakenberg model [1]:

2
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o Z); (12)
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ot OX
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— (1) We select the parameter d; = 0.2, d» = 0.1, a = 0.14, b = 0.66, the initial condition
ux, 0) = 0.8 + 0.1 cos(x), v(x, 0) = 1.03 + 0.1 cos(x) and the boundary condition
ux(0, t) =0, ux(3m, t) = 0, v(0, t) = 0, vx(3m, t) = 0.

— (2) We select the parameter d; = 0.01, d» = 1.0, a = 0.14, b = 0.16 and the initial
condition u(x, 0) = 0.3 + 0.001 sin(3x), v(x, 0) = 1.778 + 0.001 cos(2x). The results of
Experiment 3 are given in figs. 5 and 6.
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Figure 5. Numerical solutions obtained by the present method for Experiment 3 (1)
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Figure 6. Numerical solutions obtained by the present method for Experiment 3 (2)

Experiment 4. Consider the isothermal chemical model [2]:

ou ot

—=———uv
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ux,0)=1, v(x,0)= exp(—Xz), 0<x<200

u,(0,t)=0, u(200,t)=1, v, (0,t)=0, u(200,t)=0

We select the parameter k = 0.1, 0.3, 0.5, 0.7, 0.9. The results of Experiment 4 are
given in fig. 7 and tab. 2.

Table 2. Comparison of numerical solution with the k for Experiment 4

K Numerical solution | Numerical solution K Numerical solution Numerical solution
ofu of v ofu of v
0.1 0.0038529 0.0053738 0.7 0.0046887 0.0049609
0.3 0.0037315 0.0050254 0.9 0.0050133 0.0051748
0.5 0.0042162 0.0043605
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Figure 7. Numerical solutions obtained by the present method for Experiment 4

Conclusion

In this paper, a class of reaction-diffusion systems have been solved by using the bary-
centric interpolation collocation method. The numerical experiments show that the algorithm is
highly accurate. All computations are performed by a mathematical software.
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