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In thermal science, chemical and mechanics, the non-linear reaction-diffusion 
model is very important, and an approximate solution with high precision is always 
needed. In this article, the barycentric interpolation collocation method is pro-
posed for this purpose. Numerical experiments show that the proposed approach 
is highly reliable. 
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Introduction 

The paper is devoted to the numerical solution of a class of non-linear reaction-diffu-
sion models: 
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with the following initial conditions and boundary conditions: 
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where d1 > 0 and d2 > 0 are diffusion coefficients and may also include the parametrizations of 
turbulence. 

The reaction-diffusion model has wide applications in thermal science, chemical and 
mechanics [1-5]. There are some analytical and numerical methods [6-10] for solving the advec-
tion-reaction-diffusion system, among which the barycentric interpolation collocation method 
[11-17] is a high precision method. In this paper, we mainly employ the Lagrange barycentric 
interpolation collocation method to solve the reaction-diffusion model (1). 
–––––––––––––– 
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The barycentric interpolation formula of the eq. (1) 

We give two initial hypothesis functions u0, v0 and construct the following linear iter-
ative format: 
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Next, we give a meshless barycentric interpolation collocation method of eq. (3). 
Let 1 2 ,Ma x x x b      1 20 .Nt t t T     The barycentric interpolation 

form of function u(x, t) can be expressed: 
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where ξi(x) is the barycentric interpolation basis function of M nodes on interval [a, b], ηj(t) is 
the barycentric interpolation basis function of N nodes on interval [0, T]. 
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Using the method of [11-12, 15], eq. (3) can be written in following partitioned matrix 
form: 
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where D(0.1), D(0.2), and diag[h1(un–1, vn–1)] are explained in [11-12, 15]. In this paper, we use 
displacement method to impose the initial boundary conditions. The detailed procedure can be 
found in [15]. 

Numerical experiments 

Experiment 1. We consider the following reaction-diffusion model [3]: 
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with the following initial conditions:  

  100 100π( 50) π( 50)( ,0) 1 0.5sin , ( ,0) 0.25sin , 50,50
100 100
x x

u x v x x
 
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and the boundary conditions: 



 

  ( 50, ) (50, ) 1, ( 50, ) (50, ) 0, 0,400u t u t v t v t t        (8) 

In tab. 1, we analyze the influence of b1, b2 on u and v at t = 100, M = N = 20, with 
the given parameters a1 = 1.0, a2 = 0.064. 

Figures 1-3 show the numerical solutions of u and v obtained by the present 
method, where b1 = 0.01, b2 = 0.062, M = 20, N = 20. 

Table 1. Comparison of numerical solutions at t = 100 for Experiment 1 (M = N = 20) 

x u(x, t) v(x, t) u(x, t) v(x, t) u(x, t) v(x, t) 

 b1 = 0.01 b2 = 0.062 b1 = 0.5 b2 = 0.062 b1 = 0.01 b2 = −0.3 

−50 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

−25 0.5493 –0.0012 0.5156 –0.0090 0.5153 –0.0024 

0 0.0006 0.1575 0.2454 0.3662 0.2805 0.2998 

25 0.5493 –0.0012 0.5162 –0.0095 0.5153 –0.0024 

50 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

 
Figure 1. The numerical solution for Experiment 1 at a1 = 1.0, a2 = 0.064  
(for color image see journal web site) 

 
Figure 2. The numerical solution for Experiment 1 at a1 = 1.0, a2 = 0.5  

(for color image see journal web site) 



 

 
Figure 3. The numerical solution for Experiment 1 at a1 = 0.001, a2 = 0.064  
(for color image see journal web site) 

Experiment 2. Consider the following Brusselator model [4, 5]: 
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with the following initial conditions: 

  ( ,0) 0.5, ( ,0) 1 5 , 0,1u x v x x x     (10) 
and the boundary conditions: 

  (0, ) (1, ) 0, (0, ) (1, ) 0, 0,1x x x xu t u t v t v t t      (11) 

The results of Experiment 2 are given in fig. 4. 

 
Figure 4. Numerical solutions obtained by the present method for Experiment 2  
(for color image see journal web site) 

Experiment 3. Consider the Schnakenberg model [1]: 

 

2
2

1 2

2
2

2 2

u u
d a u u v

t x

v v
d b u v

t x

 
   

 

 

   

 (12) 



 

– (1) We select the parameter d1 = 0.2, d2 = 0.1, a = 0.14, b = 0.66, the initial condition  
u(x, 0) = 0.8 + 0.1 cos(x), v(x, 0) = 1.03 + 0.1 cos(x) and the boundary condition  
ux(0, t) = 0, ux(3π, t) = 0, vx(0, t) = 0, vx(3π, t) = 0.  

– (2) We select the parameter d1 = 0.01, d2 = 1.0, a = 0.14, b = 0.16 and the initial 
condition u(x, 0) = 0.3 + 0.001 sin(3x), v(x, 0) = 1.778 + 0.001 cos(2x). The results of 
Experiment 3 are given in figs. 5 and 6. 

 
Figure 5. Numerical solutions obtained by the present method for Experiment 3 (1)  

(for color image see journal web site) 

 
Figure 6. Numerical solutions obtained by the present method for Experiment 3 (2)  
(for color image see journal web site)  

Experiment 4. Consider the isothermal chemical model [2]: 
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We select the parameter k = 0.1, 0.3, 0.5, 0.7, 0.9. The results of Experiment 4 are 
given in fig. 7 and tab. 2. 

Table 2. Comparison of numerical solution with the k for Experiment 4 

k 
Numerical solution 

of u 
Numerical solution  

of v k 
Numerical solution  

of u 
Numerical solution  

of v 

0.1 0.0038529 0.0053738 0.7 0.0046887 0.0049609 

0.3 0.0037315 0.0050254 0.9 0.0050133 0.0051748 

0.5 0.0042162 0.0043605    



 

 
Figure 7. Numerical solutions obtained by the present method for Experiment 4  
(for color image see journal web site) 

Conclusion 

In this paper, a class of reaction-diffusion systems have been solved by using the bary-
centric interpolation collocation method. The numerical experiments show that the algorithm is 
highly accurate. All computations are performed by a mathematical software. 
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