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This paper proposes a new method to solve local fractional differential equation. 
The method divides the studied equation into a system, where the initial solution 
is obtained from a residual equation. The new method is therefore named as the 
fractional residual method. Examples are given to elucidate its efficiency and 
reliability.  
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Introduction 

Fractal calculus and fractional calculus have seen remarkable development due to 

their exact description of non-differentiable problems. There are many definitions of the frac-

tional differential derivative in open literature, for example, the Caputo derivative, the Rie-

mann-Liouville derivative, the Grunwald-Letnikov derivative, He’s fractional derivative, and 

fractal derivative [1-10]. This paper will adopt the local fractional derivative [11, 12], which 

could describe the non-differential functions defined on Cantor sets. 

Preliminaries of local fractional calculus  

In this section, we introduce some mathematical preliminaries of the local fractional 

calculus in a fractal space for our subsequent development [11]. 

Definition 1. Suppose that there is [11]: 
 

 0( ) ( )u t u t    (1) 

with 0 ,t t    for , 0   and , ,R    then u(t)
 
is called local fractional continuous at t = t0 

and it is denoted by 
0

0lim ( ) ( ).
t t

u t u t


  

Definition 2. Suppose that the function u(t) is satisfied the condition (1) for ( , ),t a b  

it is called local fractional continuous on the interval (a, b), denoted by: 

 ( ) ( , )u t C a b  (2) 

Definition 3. In fractal space, let ( ) ( , ),u t C a b  the local fractional derivative of u(t) 
of order α at t = t0 is given by [11]:  
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0

0

( ) ( ) 0
0 0

0

[ ( ) ( )]d ( )
D ( ) ( ) lim

d ( )
t t t

t t

u t u tu t
u t u t

t t t


 

 


 
  


 (3) 

where
 0 0[ ( ) ( )] (1 ) [ ( ) ( )].u t u t u t u t         

Definition 4. [11] Let the function u(t) satisfied the condition (2), the local fractional 

integral of u(t) of order α in the interval [a, b] is defined by:  

  

1
( )

0
0

1 1
( ) ( )(d ) lim ( )( )

(1 ) (1 )

b j N

a b j j
t

ja

I u t u t t u t t  

 

 

 


  
   

  (4) 

where
1 ,j j jt t t    1 2max , , ,... ,jt t t t     and 1[ , ],j jt t   0,..., 1,j N  t0 = a, tN = b, is a partition 

of the interval [ , ].a b   

The fractional residual method 

In order to elucidate the basic solution process of the new method, we consider the 

following local fractional differential equations on a fractal set: 

 ( , ) ( , , ) ( , )Lu x t R u x t g x t   (5) 

where L
 
is a linear differential operator, R – a linear or non-linear operator, and g(x, t)

 
– an in-

homogeneous term. 

In order to solve eq. (5), we apply the local fractional reverse operator L–1(·) on both 

sides of eq. (5), then we obtain: 

     1( , ) ( , ) [ ( , , ) ( , )]u x t u x t L R u x t g x t    (6) 

where ( , )u x t
 
is derived from the initial conditions. 

Supposing u0(x, t)
 
is a function to be determined, we can rewrite eq. (6): 

 1 1
0 0( , ) ( , ) [ ( , , ) ( , )]u x t u x t L u L u R u x t g x t       (7) 

If we let: 

 1
0[ ( , , ) ( , )] 0L u R u x t g x t     (8) 

and solve eq. (8), we can determine u0(x,t). Then substituting u0(x,t) into eq. (7), we can get the 

exact solution of eq. (5): 

 1
0( , ) ( , )u x t u x t L u   (9) 

In our new method, it is important to choose u0(x,t) = 0 in the solution process. Be-

cause the main step of this method is to cut eq. (5) into one equation system, so we call this 

method as the fractional residual method, it can be easily proved that eq. (9) can be obtained as 

the first order approximate solution by the homotopy perturbation method [13-17].
 

Illustrative examples 

In this section, to demonstrate the effectiveness of the method, several non-linear par-

tial differential equations are presented. 



 

Example 1. Consider the following local fractional differential equations 

  

3 3

3 3

(1 ) 1
( , ) ( , ) 0

2 2

u u
x t x t

x t x t

  

    

    
  

  
      (10) 

subject to the initial conditions: 

 
( ) (2 )(0, ) (0, ) (0, ) 0x xxu t u t u t     (11) 

Obviously:
  3

3

(1 )
( , , ) ( , )

2

u
R u x t x t

t x t

 

  

   
 

 
 

is a non-linear operator and g(x, t) = –1/2α

 
is an in-homogeneous term. 

Applying the inverse operator L–1(·) = 0Ix
(3α)(·) on both sides of eq. (10) and making 

use of eq. (11), we obtain: 

 

3
(3 ) (3 )

0 0 0 0 3

(1 ) 1
( , ) ( ) ( , )

2 2
x x

u
u x t I u I u x t

t x t

 
 

   

    
    

  
 (13)

  

According to eqs. (8) and (9), we let: 

 
(3 )

0 0( , ) ( )xu x t I u  (14) 

and 

 

3
(3 )

0 0 3

(1 ) 1
( , ) 0

2 2
x

u
I u x t

t x t

 


   

    
   

  
 (15) 

By virtue of eq. (15), we let: 

 
3

0 3

(1 ) 1
( , ) 0

2 2

u
u x t

t x t

 

   

   
  

 
 (16) 

Substituting eq. (14) into eq. (16), we can derive: 

 
( )

00 2 0
(1 )

t

t
u u t


 


  

 
 (17) 

Solving eq. (17), we can get: 

 
2

0

1

(1 2 )2

t
u CE



 
  

 
 (18) 

Substituting eq. (18) into eq. (14), we get the following exact solution of eq. (10): 

 
3 3 2

( , )
2 (1+3 ) (1+3 ) (1+2 )

x x t
u x t C E

  


  

 
  

 (19) 

Example 2. Consider the following Korteweg-de Vries -like equation: 

  
( ) ( ) (3 ) [2( ) ]t x xu uu u E x t   

     (20) 

subject to the initial conditions: 



 

 ( ) (2 )(0, ) (0, ) (0, ) ( )x xxu t u t u t E t  
   

 
(21) 

Obviously,
 

(3 )( ) xxxL u u  is a linear operator, ( ) ( )( , , ) t xN u x t u uu   is a non-linear operator 

and f(x, t) = Eα[2(x – t)]α is an in-homogeneous term. 

Applying the inverse operator L–1(·) = 0Ix
(3α)(·) on both sides of eq. (20) and making 

use of eq. (21), we obtain: 
2

(3 )
0 0( , ) ( ) 1+ + ( )

(1+ ) (1+2 )
x

x x
u x t E t I u

 
 


 

 
    

  

 

 (3 ) ( ) ( )
0 0{ [2( ) ]}x t xI u u uu E x t   

      (22) 

According to eqs. (8) and (9), we let: 

 

2
(3 )

0 0( , ) ( ) 1+ + ( )
(1+ ) (1+2 )

x

x x
u x t E t I u

 
 


 

 
   

    
(23) 

and  

 

(3 ) ( ) ( )
0 0{ [2( ) ]} 0x t xI u u uu E x t   

      (24) 

As we know: 

 
0

2
[2( ) ] ( 2 )

(1 )

n
n

n

E x t E t x
n


  

 






  
 

  (25) 

If we suppose: 

     0

1

( , ) ( )
(1 )

n

n

n

x
u x t a t

n










 

  (26) 

 where an (t)
 
are all functions to be determine. 

Substituting eqs. (23), (25), and (26) into eq. (24), we can deduce:

 

1

3
0 0 0 1

2 4
1 1 0 2

5
2 2 0 3 1 2

3 3 0

1
0 { ( ) ( ) ( ) ( ) [2( ) ]}

(1 3 )

1
+ { ( ) ( ) ( ) ( ) ( ) 2 [2( ) ]}

(1 4 )

1
{ ( ) ( ) ( ) ( ) 3 ( ) ( ) 4 [2( ) ]}

(1 5 )

1
{ ( ) ( ) ( )

(1 6 )

a t a t a t a t E x t x

a t a t a t a t a t E x t x

a t a t a t a t a t a t E x t x

a t a t a t

 


 


 










     
 

     
 

      
 

  
  2

2 6
4 1 3( ) 4 ( ) ( ) 3 ( ) 8 [2( ) ]}a t a t a t a t E x t x 

    

 

 +… (27)

 According to eq. (27), we can obtain: 

 0 1 2( ) ( ) ( ) ,..., ( ) ( )na t a t a t a t E t      (28) 

Substituting eq. (28) into eq. (26) and then substituting the result into eq. (23), we can 

obtain the following exact solution of eq. (20): 



 

 ( , ) ( ) ( )u x t E x E t  (29) 

Example 3. Consider the following fractional differential equation: 

 (3 ) ( ) (2 )(1 ) (1 )
2 0xxt t xxu u u u

t t

  

 

    
     (30)   

subject to the initial conditions: 

 
2

( ) (2 )(0, ) 0, (0, ) , (0, ) 0
(1 2 )

x xx

t
u t u t u t


 


  

 
 (31) 

Obviously, (3 )( ) xxtL u u   is a linear operator, 

( ) (2 )(1 ) (1 )
( , , ) 2 t xxR u x t u u u

t t

 

 

    
     

is a non-linear operator and f(x, t) = 0 is an inhomogeneous term. 

Applying the inverse operator L–1(·) = 0It
(α)

0Ix
(2α)(·) on both sides of eq. (30), and mak-

ing use of eq. (31), we obtain: 
2

( ) (2 )
0 0 0( , )

(1 2 ) (1 )
t x

t x
u x t I I u

 
 

 
  
   

 

 ( ) (2 ) ( ) (2 )
0 0 0

(1 ) (1 )
2t x t xxI I u u u u

t t

   

 

     
    

   
(32) 

According to eqs. (8) and (9), we let: 

     
2

( ) (2 )
0 0 0( , )

(1 2 ) (1 )
t x

t x
u x t I I u

 
 

 
 
   

 (33) 

and 

 ( ) (2 ) ( ) (2 )
0 0 0

(1 ) (1 )
2 0t x t xxI I u u u u

t t

   

 

     
    

 
 (34) 

We let : 

  0 ,

. 0

( , )
(1 ) (1 )

m n

m n

m n

x t
u x t a

m n

 

 






   

  (35) 

where am,n
 
are all constants to be determine. 

Substituting eqs. (33) and (35) into eq. (34), we can derive: 

( +2) ( +1) ( +4) ( +1)

, ,

. 0 . 0

( +4) ( +1) ( +2) ( +1)

, ,

. 0 . 0

0
[1 ( +2) ] [1 ( +1) ] [1 ( +4) ] [( +1) ] [1 ( +1) ]

2
[1 ( +4) ] [1 ( +1) ] [1 ( +2) ] [( +1) ]

m n m n

m n m n

m n m n

m n m n

m n m n

m n m n

x t x t
a a

m n m n n

x t x t
a a

m n m n

   

   

    

   

 

 

 

 

  
       

 
     

 

 
[1 ( +1) ]n 


 

 

 
3 23

2 (1 3 ) (1 2 )

x t 

 


   
 (36) 



 

Comparing with the same coefficient of m nx t in eq. (36), we can obtain: 

 

,

,1

=0, ( 1),

( 1) , 2 1

0, 2

m n

k

m

a n

m k
a

m k



   
 



 (37) 

Substituting eq. (37) into eq. (35), and then, substituting the result into eq. (33), we 

can get the following exact solution of eq. (30): 

2
( ) (2 )

0 0 0

2 ( +2) 2

,1

. 0

2 2 (2 1)

1

( , )
(1 2 ) (1 )

(1 2 ) (1 ) [1 ( +2) ] (1 2 )

( 1)
(1 2 ) (1 ) (1 2 ) [1+(2 1) ]

t x

m

m

m

k
k

k

t x
u x t I I u

t x x t
a

m

t x t x

k

 
 

   

   

 

   

   









  
   

  
       

   
       





 

 
 

2

sin
1 2

t
x








 

 (38) 

Example 4. Consider the following non-linear gas dynamic like equation: 

 
2 2

2 2

( , ) ( , )
( , ) ( , )[1 ( , )] 0

u x t u x t
u x t u x t u x t

t x

 

 

 
   

 
 (39) 

subject to the boundary and initial conditions: 

 

( ,0) ( , π) 0

( ,0)
( ,0) sin

u t u t

u x
u x x

t






 

 

 


 (40) 

Applying the inverse operator L–1(·) = 0It
(3α)(·) on both sides of eq. (39), and making 

use of eq. (40), we obtain: 

(2 )
0 0( , ) sin 1

(1 )
t

t
u x t x I u


 




 
    

  
 

 

2
(2 )

0 0 2

( , )
( , ) ( , )[1 ( , )]t

u x t
I u u x t u x t u x t

x






 
   

 
 (41) 

According to eqs. (8) and (9), we let: 

 
(2 )

0 0( , ) sin 1
(1 )

t

t
u x t x I u


 




 
   

  
   (42) 

and 



 

 

2
(2 )

0 0 2

( , )
( , ) ( , )[1 ( , )] 0t

u x t
I u u x t u x t u x t

x






 
    

 
 (43) 

We suppose: 

 0

1

( , ) ( )sin ( )n

n

u x t u t nx 






  (44) 

where un(t) are all constants to be determine. 

Substituting eqs. (42) and (44) into eq. (43), we can obtain:  

(2 )
0

1 1

( )sin ( ) sin 1 sin ( ) ( )
(1 )

n t n

n n

t
u t nx x nx I u t


   

  


 

 

 
    

  
   

 
2 (2 ) (2 )

0 0

1 1

( , ) ( ) sin ( ) ( ) sin ( ) ( ) 0t n t n

n n

u x t n nx I u t nx I u t    
 

 

 

 
    

 
   (45) 

Comparing the coefficient of like powers of sinα(nx)α of eq. (45), the following equa-

tions are obtained, respectively:  

 ( ) 0, 2,3...nu t n   (46) 

 (2 )
1 0 1( ) 1 ( ) 0

(1 )
t

t
u t I u t





   

 
 (47) 

Solving eq. (47), we get: 

 1( ) ( )u t E t  (48) 

Substituting eqs. (46) and (48) into eq. (43), and then, substituting the result into eq. 

(42), we can get the following exact solution of eq. (39): 

 ( , ) ( )sin ( )u x t E t x 
   (49) 

Conclusions  

Fractal calculus has been attracting much attention from various communities, the 

fractional order can be determined experimentally by calculating the fractional dimensions of 

the studied fractal medium [18, 19].  

In this article, we have suggested a new method called the fractional residual method 

for solving the local fractional equation. Our method is very simply and straight-forward as 

compared with other methods, e. g., the variational iteration method [20, 21]. The test examples 

are showed that the suggested method can be regarded as a simple and efficient tool for com-

puting local fractional differential equations.  
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