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In this paper, the direct construction method combined with the differential poly-
nomial characteristic set algorithm is used to complete conservation laws of PDE. 
The process of the direct construction method is to solve a system of linear deter-
mining equations, which is not easy to be solved. This paper uses the differential 
polynomial characteristic set algorithm to overcome the shortcoming, and con-
structs an explicit conservation law.  
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Introduction  

In the field of PDE, conservation laws and variational formulations [1-20] have many 

important applications, particularly with regard to linearization and integrability of PDE. In this 

paper, the direct construction method [21, 22] is used to complete the conservation laws of 

PDE, this method holds when no variational principle exists, and its derivation process requires 

to solve an over-determined linear PDE (determining equations), which are usually large and 

not easy to be solved directly, so the differential polynomial characteristic set algorithm is used 

to overcome the shortcoming.  

Direct construction method 

Consider the following PDE with M dependent variables 1 2( , , , )Mu u u u  and 
m independent variables 1 2( , , , ):mx x x x  

 ( , , , , ) 0, ( 1,2, , )n
x xF x u u u N      (1) 

Definition 1. A local conservation law of (1) has the following expression: 

 [ ] 0i
iD u   (2) 

holding for all solutions of eq. (1). 

Definition 2. If functions{ [ ]}U and{ [ ]}i U for system (1) satisfy: 
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 [ ] [ ] [ ]i
iU F U D U

    (3) 

then { [ ]}U  is called multipliers of a conservation law. 

The function{ [ ]}U yields a set of multipliers for conservation law of system (1) if: 

 ( [ ] [ ]) 0, 1,2, ,
U

E U F U M


     (4) 

where Euler operator is denoted by 

 i i jU
i ij

E D D D
U U U


  

  
   
  

       

and total derivative is defined: 
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Differential polynomial characteristic set algorithm  

Suppose DTE and IP are differential polynomial system (dps), we frequently use the 

following notations [23-25]: 

( )Zero DTE = all solutions of DTE = 0; 

( / )Zero DTE IP = all solutions of DTE = 0 such that 0IP  ; 

( , )Zero DTE IP = all solutions of DTE = 0 such that 0IP  ; 
The IP denotes the initials and separate products for differential polynomials, called 

IP products; 

P ( / )remd DTE DCS = the set of pseudo-remainders of DTE w.r.t chain DCS. 

Theorem 1 Let DPS be a finite differential polynomials system, then the differential 

polynomial characteristic set algorithm yields a finite number characteristic set DCSk of DPS 

with initials and separate products IPk such that the following zero decomposition: 

( ) ( / )k k

k

Zero DPS Zero DCS IP  

is held. 

The algorithm to determine characteristic set DCS  listed below. 

Input A dps DPS . 

Output A differential characteristic set DCS . 

Start Let 0i  ; 

Step 1 Select a basic set iDBS from iDPS ; 

Step 2 Compute all the nonzero coherent dps of ,iDBS and put them in set from
'

iIT ; 

Step 3 IP (nonzero coherent differential polynomial)
'

iIT , compute 
P ( / ) \{0}iremd IP DBS , and put the results in set iIT ; 

Step 4 Compute P (( \ ) / ) \{0}i i i iR remd DPS DBS DBS , let i i iRJ IT R  ; 

Step 5 If iRJ  (Empty), then iDCS DBS , and stop, else 1i i  , and 

-1 1i i iDPS DPS RJ   , go to Step 1. 



 

Characteristic set has fine properties. On the one hand, it is equivalent to the original 

system under 0IS  , and on the other hand, it is triangular which is more important for differ-

ential problems. For example, in this paper, the determining equations of conservation law is 

hard to solve, we use differential polynomial characteristic set algorithm to deal with it, and 

obtain characteristic set which is triangular and easy to be solved.  

Local conservation law computation 

Example 1. Consider the following equation [26]: 

 ( ) 0t x xxxu F u u u    (5) 

for simplicity of computation, we specify ( )F u u , and eq. (5) is changed: 

 0t x xxxu uu u    (6) 

Suppose that ( , , , )xx t u u  is a multiplier of a conservation law of eq. (6), then: 

 ( , , , )( )x t x xxx x tx t u u u uu u D X D T      (7) 

The determining equations derived from (4) are: 

 

3 2

0

0

3 3 0

xu

x uu xu

t xxx x uuu x x xxu x xuu

DTE u

u u u u



 

     




  


     

 (8) 

Taking left hand side as differential polynomial in   and their derivatives for each 

equation, we have following differential polynomial system: 

 

3 23 3

xu

x uu xu

t xxx x uuu x x xxu x xuu

DPS u

u u u u



 

     




 


    

 (9) 

Using the differential polynomial characteristic set algorithm, we obtain the following 

characteristic set DCS of DPS:  

 
,

, ,

xu uu

t x xu xx

DCS
u u

 

  


 


 (10) 

Solving the characteristic set corresponding equations DCS = 0, we have: 

 1 2 3( ) ( ) { ( ) }Zero DPS Zero DCS x ut c c u c       (11) 

where 1 2 3, ,c c c  are arbitrary constants. The corresponding conserved densities is: 

1 2 1 3

2 3 2
1 3 2 1 2 1 1 2 1 3

1
( ) ( )

2

1 1 1 1
( ) ( ) ( )+ 1

2 3 2 2
xx x x x xx xx

T u c ut c u c x c u

X u c x c u c c t uu c c t c u u t u c c xu c u


    


              

 (12) 



 

 
Example 2. Consider the following non-linear telegraph equation [27]: 

 [ ( ) ] [ ( )] 0tt x x xu F u u G u    (13) 

For simplicity of computation, we specify ( ) ( )F u G u u  , and eq. (13) becomes: 

 ( ) 0tt x x xu uu u    (14) 

Suppose ( , , , , )x xxx t u u u  is a multiplier of a conservation law of (14), then: 

 ( , , , , )[ ( ) ]x xx tt x x x x tx t u u u u uu u D X D T      (15) 

The determining equations derived from (4) are: 

2 2 2 3 2

0, 0, 0, 0, 0

2 0

3 2 2 0

2 0

x x x x

x

x x x

x x x x

uu u u uu ut u t

u x u

u x x u u u

x u x ux x xu x xu x uu xx x uu x tt x uu

DTE
u u u

u uu u u u u u uu

    

 

   

         

    

  

 
    


          

 (16) 

Taking left hand side as differential polynomial in   and their derivatives for each 

equation, we have following differential polynomial system: 

2 2 2 3 2

, , , , ,

2 ,

3 2 2

2

x x x x

x

x x x

x x x x

uu u u uu ut u t

u x u

u x x u u u

x u x ux x xu x xu x uu xx x uu x tt x uu

DPS
u u u

u uu u u u u u uu

    

 

   

         



 

 
   


         

 (17) 

Using the differential polynomial characteristic set algorithm, we obtain the following 

characteristic set DCS of DPS: 

  , , ,
xu u xx tt xDCS        (18) 

Solving the characteristic set corresponding equations DCS = 0, we obtain the follow-

ing solutions: 

 3 2
3 4 3 4 1 2

1 1
( ) = +

6 2
Zero DCS c xt c x c t c t c t c

 
     
 

 (19) 

The corresponding conserved density is: 

 

3 2 2
3 4 3 4 1 2 4 1 3 3

2 3 2
3 4 3 4 1 3

2
1 3 2 4 2 4

1 1 1

6 2 2

1 1 1
( ) ( 1) ( 1) ( )

2 6 2

( )

t

x x x x

x x

T u c xt c x c t c t c t c u c t c c x c t

X u c t c uc t u c t u u u t c u c u

tu c c x c uu u c c u xuc

    
            

   


       



     

  (20) 



 

Conclusion 

In this article, conservation laws of PDE are obtained by using the direct construction 

method. Firstly, an over-determined linear PDE (determining equations) is obtained, which is 

always difficult to be solved, then, we use differential polynomial characteristic set algorithm 

to process this problem, and get characteristic set of the determining equations, which is trian-

gular and easy to be solved. The examples show that this method is effective to compute the 

local conservation laws of PDE and can be applicable to different cases of non-linear PDE. 
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