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Numerical study of NOx abatement in a photocatalytic reactor has been caught 
much attention recently. There are two ways for the numerical simulation, one is 
the CFD model, the other is the variational-based approach. The latter leads to a 
conservation algorithm with less requirement for the trial functions in the numer-
ical study. In this paper we establish a variational principle for the problem, giv-
ing an alternative numerical method for NOx abatement.  
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Introduction  

Recently Lira et al. [1] suggested a 2-D CFD model for the numerical simulation of 

NOx abatement in a photocatalytic reactor, and good results were obtained. The numerical 

simulation has two general approaches, one is to use the governing equations to construct al-

gorithms like that in the CFD simulation [1], the other is to establish a variational principle 

for the discussed problem, which is an energy form and can suggest suitable boundary condi-

tions and trial functions [2]. The variational-based finite element method (FEM) [2] has many 

advantages over its traditional FEM partner, and we should not ignore the convenience and ef-

fectiveness of the variational-based simulation for NOx abatement in a photocatalytic reactor.  

Mathematical model 

We introduce a potential function F defined as:  
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to replace the Navier-Stokes equations, where u and v are velocity components in x- and y-di-

rections, respectively. Equations (1) and (2) imply that: 
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The mass conservation requires that:  
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The conservation of NO, NO2, and H2O requires that [1]: 
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where ωi is the species mass fraction and Ji,x and Ji,y – the diffusive flux of the species i in the 

x- and y-co-ordinates, given by Fick’s law [1]: 
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where Di,m is the species diffusivity in the mixture. Equation (5) becomes:  
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Variational principle for the photocatalytic NOx abatement 

Using the semi-inverse method [3-18], we can obtain the following variational prin-

ciple: 
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where the Lagrange function, L, is given by:  
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where a is a free parameter satisfying:  
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The stationary condition (Euler-Lagrange equation) for eq. (9) with respect to some 

an independent function, Y, can be written: 
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where Y is an independent function of u, or v, or F, the subscribe means the partial deriva-

tion.  



 

The Euler-Lagrange equations with respect to u, v, and F, respectively,  are given: 
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It is obvious that eqs. (13) and (14) are equivalent to, respectively, eqs. (1) and (2) 

when 2a + 1 ≠ 0. In view of eqs. (1) and (2), we can obtain eq. (8) from eq. (15).  

Discussion and conclusion  

As we can see from eq. (10), the highest order is the first order, while that in eqs. (4) 

and (8) are second order. During the numerical simulation, the trial functions for wi and F 

must be at least two-order differential in the CFD model, while the variational principle re-

quires only first-order differential trial functions, making the simulation process much sim-

pler. Additionally, the variational model can effectively deal with free or moving boundaries 

for multiple phase problems, which cannot be done effectively by the CFD model, a detailed 

discussion on the free boundary problem by the variational principle was given in [2].  

Fick’s law can also be further improved using fractal calculus [19-26]:  
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where ¶/¶xa and ¶/¶yb are fractal derivatives with respect to x and y, respectively. The a and b 

are fractal dimensions in x- and y-directions, respectively. Detailed discussion of the fractal 

calculus and its applications are available in [19-26]. The semi-inverse method was success-

fully applied to establishment of a variational principle in a fractal space [27, 28].  

To be concluded, for the first time ever, a variational principle is established in this 

paper to deal with NOx abatement in a photocatalytic reactor.  
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