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In this paper, He's fractional derivative is adopted to establish fractional evolu-
tion equations in a fractal space. He’s fractional complex transform is used to 
convent the fractional evolution equation into its traditional partner, and the ho-
motopy perturbation method is used to solve the equations. Some illustrative ex-
amples are presented to show that the proposed technology is very excellent. 
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Introduction 

Evolution processes arise everywhere from life to a fractal pattern of a lightning, its 

basic property is similarities with remarkable diversity at different periods. The traditional 

evolution equation can be written in the form:  

 2t x xxtH H H   (1) 

where H can be some a thermal parameter.  

Consider the memory property of an evolution process, which cannot be modeled by 

eq. (1), we give a modification of eq. (1) in the form: 

 2 , ( ,0) e , 0x
t x xxtH H H H x t      (2) 

where 

tH is He’s fractional derivative defined [1]: 
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where f0(t) is a known a function. 

He’s fractional derivative is defined through the variational iteration algorithm [2-5], 

and it has been caught much attention in practical applications [6-9].  

Equation (2) can effectively describe the similarity pattern at different periods, it can 

be solved by the variational iteration method [2-5], the Taylor series method [10, 11], the ho-

–––––––––––––– 
* Corresponding author, e-mail: ysw140917@163.com 

mailto:ysw140917@163.com


 

motopy perturbation method [12-20] and the variational principle [21, 22]. In this paper we 

will study eq. (2) by He’s fractional complex transform (HFCT) [23-25] to convert the frac-

tional equation into a common differential equation, and solve the resultant equations by the 

homotopy perturbation method [12-20].  

Fractional complex transform 

The fractional complex transform [23-25] is a very good mathematical tool to con-

verting a fractional differential equation in a fractal space into its traditional partner in a con-

tinuous space. The dimension and scale are very important things in modeling a practical 

problem, the different scales or dimensions will lead to different results or properties for the 

same phenomenon. The fractional complex transform can convert a discontinuous space on a 

small scale into a continuous space in a large scale, so it is also called as a two-scale trans-

form [26, 27]. 

Consider the following general fractional differential equation: 
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where ( )/( )tu u t     is He’s fractional derivation [1], u is continuous (but not necessari-

ly differentiable) function. 

The fractional complex transform reads [23, 24]: 
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where p, q, k, and l are unknown constants. Using the basic properties of fractional derivation 

and above transform, we have: 
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Therefore, we can easily convert the fractional differential equations into ODE. 

The homotopy perturbation method [12-20] 

Consider the following equation: 

 ( ) ( ) 0,A u f r r      (3) 

with the boundary condition of: 
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where A is a common differential operator, B is a boundary operator, f(r)
 
is a known function, 

G is the boundary of the domain W. 

We divide operator A into N and L. The operator N is a non-linear operator. The op-

erator L is a linear operator. 

So, eq. (3) can be written into the following form: 

 ( ) ( ) ( ) 0L u N u f r    (5) 



 

Using the He’s homotopy technique, we construct a homotopy as m(r, q):W´ 

´[0, 1] ® R
 
which satisfies: 

 0( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0H q q L L u q A f r         (6) 

or 

 0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0H q L L u qL u q N f r         (7) 

where q Î[0, 1] is a parameter, u0 is an initial condition of eq. (2), which satisfies the bounda-

ry conditions. According to eqs. (5) and (6), we have: 

 0( ,0) ( ) ( ) 0H L L u     (8) 

 ( ,1) ( ) ( ) 0H A f r     (9) 

According to the homotopy perturbation method (HPM), we can first adopt the pa-

rameter q as a small parameter. We assume the solution of eqs. (5) and (6) can be written into 

a power series: 

 2 3 4
0 1 2 3 4q q q q            (10) 

Setting q = 1 in eq. (10), we obtain: 

 0 1 2 3 4
1

lim
q

u      


        (11) 

Numerical applications 

First, we adopt He’s fractional complex transform [23, 24]: 
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We can convert eq. (2) into a common differential equation: 

  2T x xxTH H H   (13) 

  ( ,0) e , 0xH x t   (14) 

By HPM, we have: 

 0 0e 0, ( ,0) ex x
TH H x     

 1 0 0 12 e 0, ( ,0) 0x
T T xxTH H H H x      

 2 1 1 22 0, ( ,0) 0T T xxTH H H H x     

 3 2 2 32 0, ( ,0) 0T T xxTH H H H x     

 4 3 3 42 0, ( ,0) 0T T xxTH H H H x     

 5 4 4 52 0, ( ,0) 0T T xxTH H H H x     

 6 5 5 62 0, ( ,0) 0T T xxTH H H H x     



 

By the previous equations, we have: 
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Therefore, the 5-order approximate solution of eq. (13) can be written into the fol-

lowing form: 

 
0 1 2 3 4 5( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )H x T H x T H x T H x T H x T H x T H x T        
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So, the approximate solution of eq. (2) can be written: 
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Figure 1. When b = 0.5, the 5-order approximate 

solution of eq. (2) 

 

Figure 2. When b = 0.8, the 5-order approximate 

solution of eq. (2) 

 

Figure 3. When b = 1, the 5-order approximate 
solution of eq. (2) 

 

Figure 4. When b = 1, the exact solution of eq (2) 



 

Figures 1-3 show the 5-order approximate solution for different values of a. Figure 

4 shows the exact solution of eq. (2) when  b = 1. We clearly find that the approximate solu-

tions of eq. (2) continuously trend to its exact solution when b ® 1. In this paper, we only use 

five terms to approximate the solution of eq. (2). If we adopt more terms, its accuracy of the 

solutions will be greatly improved. 

Discussion and conclusion 

Variational principles in a fractal space has been caught much attention recently. 

Wang et al. [28] shed a bright light on effective establishment of a variational formulation in a 

fractal space by the semi-inverse method [28-30]. There might be a variational principle for 

eq. (2), we will discuss it in a forthcoming paper.  

In this paper, the fractional evolution equation is described by He's fractional deriva-

tive in a fractal space. We successfully use HFCT and HHPM to find the approximate analyti 

cal solution of the fractional evolution equation. The numerical example is presented to show 

that the proposed method is very excellent. The present method can be easily extended to 

fractal calculus [31-40].  
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