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The limitations of the polysulfides shuttling and lithium dendrites have been ob-
stacles to improve the lithium-sulfur battery technology, resulting in low active 
material utilization and poor cycle life. Here we report a simple modification of 
the traditional lithium-sulfur battery configuration to achieve high capacity with 
a long cycle life and high reversible rate. Great improvement was observed with 
a carbonized PAN/PMMA/rGO paper between the anode and the separator in the 
active material utilization and capacity retention. The adding of a free-standing 
PAN/PMMA/rGO carbon interlayer demonstrated the feasibility of enhancing the 
performance of lithium-sulfur batteries. 
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Introduction  

With the continuously increasing demand of energy consumption, lithium-sulfur  
(Li-S) battery has been catching increasing attention, because it is low cost, environmentally 
friendly and has high theoretical specific capacity of as high as 1675 mAh/g, great energy 
density of as high as 2500 Wh/kg [1, 2]. However, practical applications of the Li-S batteries 
have been hindered by some inherent limitations, such as low active material utilization, short 
cycle life and severe self-discharge. The reasons for these obstructed elementals are the insu-
lating properties of sulfur and its intermediates, the large volume change during the intercala-
tion process and the polysulfide shuttle effects [3]. 

Much research work has been made to resolve these issues normally by physical 
confinement of cathode. Sulfur was mixed with all kinds of carbons [4-6], oxides [7-9], con-
ductive polymer coating [10, 11] through binders to augment conductivity. They have showed 
good results on preventing the dissolution of polysulfides. Besides, a separator is also a neces-
sary component in the battery as it separates the cathode from the anode from the cathode to 
serve as the electrolyte reservoir to help the transport of ions [12]. Therefore, another alterna-

–––––––––––––– 
* Corresponding author, e-mail: liya@zstu.edu.cn; liuleiyin@aliyun.com; ysw140917@163.com 

mailto:liya@zstu.edu.cn
mailto:liuleiyin@aliyun.com
mailto:ysw140917@163.com


 

tive and simple strategy to prevent polysulfides transferring is to develop a modified func-
tional separator [13]. Inserting a carbon interlayer between the sulfur cathode and separator 
had unique advantages of improving the performance of Li-S batteries [14-19]. Thus, the in-
terlayer was proved to minimize the diffusion of lithium polysulfides and promote the utiliza-
tion of active materials, and the cycle performance could be improved.  

Among the interlayers, carbonized electrospun nanofibers have received attention 
owing to their highly porous structure, controllable thickness and good electrolyte wettability, 
which can ensure the fast transfer of ions [20]. Even though the principle of electrospinning 
continues to be explored [21-36], needle electrospinning remains the most basic method for 
producing high quality nanofibers. In order to promote the cyclic stability and maintain the 
energy density advantage of Li-S batteries, herein, we present a PAN/PMMA/rGO carbon pa-
per fabricated by electrospinning after thermal treatment as the interlayer. Its bifunctional role 
toward the protection of both anode and cathode is explored. By introducing the carbonized 
PAN/PMMA/rGO interlayer, we compare it with the pure Celgard PP separator in the Li-S 
battery, the limited soluble polysulfides loss ratio is expected, which not only reduces the 
electrochemical resistance but also localizes the migrating polysulfides and traps them, there-
by improving the discharge capacity as well as cyclability. 

Experimental  

For the preparation of PAN/PMMA/rGO solution, 0.3 g reduced graphene oxide 
(rGO) was first dispersed in 27.6 g Dimethylformamide (DMF) solvent under sonication. 
PAN/PMMA (7:3 by quality) was then added to the rGO-dispersed solution and stirred over-
night to form a homogenous 8 wt.% solution. The as-spun nanofiber membrane was collected 
on an aluminum plate with a flow rate of 0.75 mL/h at a high voltage of 15 kV and the tip-to- 
-collector was set at 15 cm. The thickness of the PAN/PMMA/rGO nanofiber was fixed at 
70 ± 5 µm. The as-prepared nanofiber mat was stabilized in air at 250 °C for 2.5 hours with a 
heating rate of 5 °C min–1, and then treated in nitrogen at 800 °C for 2 hours with a heating 
rate of 2 °C min–1 to obtain the carbonized PAN/PMMA/rGO paper. Schematic illustration of 
the fabrication process of the interlayer is shown in fig. 1(a), respectively.  

The electrolyte was prepared by dissolving 1 M LiTFSI and 0.1 M lithium nitrite in 
a mixture of DOL and DME (1:1 by volume). The carbon-coated aluminum foil containing 
70 wt.% pure sulfur, 20 wt.% TIMCAL, and 10 wt.% PVDF was made as cathode, whose sul-
fur loading was from 0.8 to 2.0 mg/cm, then it was put in a vacuum oven at 60 °C overnight. 
Testing cells (2032-type) were assembled by the sulfur electrodes, celgard PP separators, 
PAN/PMMA/rGO carbon paper interlayer and Li metal as the anode in an argon-filled glove 
box. The schematic configurations of Li-S cells with bare PP separator as control sample and 
a bifunctional interlayer were displayed in figs. 1(b) and 1(c), respectively. The cells were 
charged and discharged between 1.7 and 2.8 V on a battery tester at room temperature. The 
cyclic voltammetry (CV) was conducted at a scan rate of 0.1 mV/s.  

Results and discussion 

Here, to test the properties of the PAN/PMMA/rGO as an interlayer in Li-S batter-
ies, coin cells were assembled with or without the interlayer. The CV of the cells were shown 
in fig. 2 at a scan rate of 0.1 mV/s between 1.7 V and 2.8 V. All CV had two cathodic peaks 
because of the conversion of sulfur and polysulfides. The cell without interlayer showed the 
delayed reaction (larger polarization) because of a higher kinetic barrier. It means the adding 
of the interlayer could suppress the reduction of polysulfides to sulfides. The anodic peaks  



 

 

Figure 1. (a) Schematic illustration of the fabrication process of the PAN/PMMA/rGO carbon 
interlayer, a schematic cell configuration of rechargeable Li-S batteries, (b) traditional configuration 
with PP separator and (c) new configuration with the interlayer 

around 2.3 V were caused by the reversible conversion reaction of insoluble Li2S2/Li2S to 
lithium intermediates and further to S8. Similarly, the anodic voltage for the cells without in-
terlayer were also slightly higher than those with interlayer. From the comparison, it was ob-
vious that the loop area of the cell without interlayer was smaller. Therefore, the 
PAN/PMMA/rGO interlayer could enhance the electrochemical stability. 

 

Figure 2. Cyclic voltammogram scans of the Li-S cell (a) without and (b) with interlayer at a potential 
sweep rate of 0.1 mV/s  

To manifest the advantageous electrochemical properties of the cell with the 
PAN/PMMA/rGO interlayer compared with the pure routine PP separator, cycle performance 
tests for the first 100 cycles at 0.1 C were illustrated in fig. 3. It can be seen that the initial 



 

discharge capacity of the cell with and with-
out the interlayer is 1164 mAh/g and 895 
mAh/g, respectively. The coulombic effi-
ciency of the cell with the interlayer was 
higher than the cell using routine separator 
in the most cycles, which can be attributed 
to the blocking effect of the carbonized 
PAN/PMMA/rGO interlayer to the polysul-
fides and the surface morphology of lithium 
anode could be stabilized. 

The first discharge and charge potential 
profiles of the cells with and without inter-
layer were presented in fig. 4. There were 
two potential plateaus showing at around 
2.2 V and 2.1 V during the discharge pro-
cess, and the charge plateaus were located at 
about 2.3-2.4 V. Nevertheless, it can also be 
demonstrated that the cell with the interlayer 
had higher capacity than that with PP sepa-
rator and the active materials were utilized 
more adequately.  

Conclusion 

The PAN/PMMA/rGO carbon interlayer 
was prepared from electrospinning with 
thermal treatment, which could anchor the 
soluble polysulfides, then the effective con-
finement minimized the side reaction on the 
anode side. As a result, after inserting the in-

terlayer, the utilization of the active materials was improved, high capacities and high Cou-
lombic efficiencies were obtained compared with the pure PP as the routine separator. There-
fore, the PAN/PMMA/rGO carbon interlayer improved the performance of the Li-S batteries by 
stabilizing the surface morphology of lithium anode and confining the polysulfides shuttling. 
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