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The inverse scattering transform plays a very important role in promoting the de-
velopment of analytical methods to solve non-linear PDE exactly. In this paper, 
new and more general mixed spectral Ablowitz-Kaup-Newell-Segur equations 
are derived and solved by embedding a novel time-varying spectral parameter in-
to an associated linear problem and the inverse scattering transform. As a result, 
new exact solutions and n-soliton solutions are obtained. To gain more insights 
into the embedded spectral parameter and the obtained solutions, some dynam-
ical evolutions, and spatial structures are simulated. It is shown that the derived 
Ablowitz-Kaup-Newell-Segur equations are Lax integrable and the obtained soli-
ton solutions possess time-varying amplitudes. 
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Introduction  

In 1967, Gardner et al. [1] discovered a wonderful relationship between the cele-

brated Korteweg-de Vries (KdV) equation and the scattering theory of Schroedinger equation 

and hence obtained the exact and explicit n-soliton solution of the KdV equation for the first 

time. Gardner et al.’s [1] discovery has brought far-reaching influence, it not only brings 

about the climax of soliton research, but also develops into a basic method the well-known 

inverse scattering transform (IST) method for constructing soliton solutions of non-linear 

PDE. Since the steps of IST method solving the initial value problem (IVP) of non-linear PDE 

are very similar to those of Fourier transform used to deal with the IVP of linear equations, 

the IST method is often referred to as non-linear Fourier analysis [2]. With the development 

of the IST method, more and more analytical methods have been developed for solving non-

linear PDE, such as Hirota’s bilinear method [3-7], Painleve truncation expansion [8-10], ho-

mogeneous balance method [11, 12], auxiliary equation methods [13-15], variational iteration 

method (VIM) [16], homotopy perturbation method (HPM) [17], exp-function (EXP) method 

[18-20], and so on. Thanks to the powerful VIM, HPM, and EXP method proposed by Ji-

Huan He, a large number of exact and approximate solutions have been obtained in different 

fields. Recently, Zhang and Hong [21] extended the IST method to the generalized isospectral 

Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, the variable-coefficient non-isospectral 
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Toda lattice hierarchy [22], the generalized non-isospectral AKNS hierarchies [23-27], the 

mixed spectral KdV hierarchy with self-consistent sources [28] and the mixed spectral AKNS 

hierarchies [29-33], supersymmetric KdV equation [34], respectively. 

In this paper, we shall derive and solve the following new and more general mixed 

spectral AKNS equations: 
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in the framework of IST method, and then simulate not only the spatial structures of the ob-

tained soliton solutions but also the dynamical evolutions of the non-isospectral parameter: 
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which is embedded into the associated linear spectral problem:  
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and its evolution equation: 
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Here the operator L is defined as: 

 
1

0
2 ( , )

0

q
L r q

r


   

     
    

,   
x


 


,   

1 1
d

2

x

x

x







 
   

 
   (5) 

where 
2 1i   , ( , ),q q x t  and ( , )r r x t and their derivatives of any order with respect to x  

and t  are smooth functions which vanish as x  tends to infinity, and A, B, and C are undeter-

mined functions of x, t, q, r, and k. 

Derivation and Lax integrability 

In view of eqs. (2)-(4), we first suppose that: 
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Then the compatibility condition of eqs. (3) and (4) are equivalent to: 
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Next, further letting: 
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and substituting eq. (8) into eq. (7), then comparing the coefficients of 2ik  in eq. (7) yields: 
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Finally, from eqs. (9)-(11) we arrive at eq. (1). This process of derivation shows that 

the mixed spectral AKNS equations are Lax integrable. 

Time-dependence of scattering data 

Making use of the asymptotic property of the matrix: 
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and the similar manipulations [31, 33], we can determine the time-dependence of the scatter-

ing data of the spectral problem (3): 
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as follows: 
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where 
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are the scattering data of the spectral problem (3) in the case of [ ( ,0), ( ,0)] ,Tq x r x respective-

ly. 



 

Exact solutions and soliton solutions 

From eqs. (2) and (13)-(17), we can obtain two formulae of exact solutions of the 

mixed spectral AKNS equations: 
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where 1 2( , , ) [ ( , , ), ( , , )]TK x y t K x y t K x y t  satisfies Gel’fand-Levitan-Marchenko integral 

equation: 
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and 
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are determined by the scattering data in eqs. (2) and (13)-(17). 

Let ( ,0) ( ,0) 0,b k b k  we have ( , ) ( , ) 0R k t R k t   and hence obtain n-soliton 

solutions of the mixed spectral AKNS equations: 
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where E is unit matrix, ( )j t , ( )jc t , ( ),m t  and ( )mc t  are determined in eqs. (15) and (16). 

Dynamical evolutions and spatial structures 

To gain more insights into the non-isospectral parameter (2) and the obtained n-so-

liton solutions (21), we set 1n n   and then consider their dynamical evolutions and spatial 

structures. In this case, eqs. (21) give one-soliton solutions: 
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where 
1( )t  and 

1( )t  are determined by: 
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Solving eqs. (26), we further determine: 
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by introducing InverseFunction[·]––a built-in function of MATHEMATICA 8 and two con-

stants: 
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where #1 is the first parameter of the InverseFunction[·], & – the identification of an anony-

mous function.  

In figs. 1 and 2, two novel simulations of dynamical evolutions of eqs. (27) and (28) 

are shown by selecting the parameters as 
1(0) 1   and 

1(0) 0  , respectively. Two spatial 

structures of the one-soliton solutions (24) and (25) are shown in figs. (3) and (4), where the 

parameters are selected as 1(0) 0  , 1(0) 0.1  , 1(0) 0.1c   and 1(0) 2c  . It is easy to see 

from figs. 3 and 4 that the one-soliton solutions possess time-varying amplitudes in the pro-

cess of propagations. 

 

Figure 1. Dynamical evolutions of spectral 
parameter (27) 

 

Figure 2. Dynamical evolutions of spectral 
parameter (28) 

 

Figure 3. Spatial structure of one-soliton  
solution (24) 

 

Figure 4. Spatial structure of one-soliton  
solution (25) 

Conclusion 

In summary, we have derived and solved a new and more general mixed spectral 

AKNS equations in the framework of IST method. This is due to the novel spectral parameter 

embedded into the linear spectral problem associated to the AKNS equations. Though there 

are similar studies [29-33], the AKNS equations, the spectral parameter and the results pre-

sented in this paper are different from those in literature. Like the Taylor series method [35, 

36], the IST method, which is also called as the non-linear Fourier analysis, plays an im-

portant role in non-linear science and two scale thermodynamics [37, 38]. Variational formu-



 

lations and conservation laws for AKNS equations are also helpful for studying the solution 

structures, and the semi-inverse method is a good tool to establishment of the needed varia-

tional formulations [39-43]. 
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