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In this study, the numerical solution of the ordinary kind of differential equation 
for a simple pendulum with large-angle of oscillation was introduced to obtain the 
time period. The analytical solution is obtained in terms of elliptic functions, and 
numerical solution of the problem was achieved by using two numerical quadra-
ture methods, namely, Simpson’s 3/8 and Boole’s method. The period of a simple 
pendulum with large angle is presented. A comparison has been carried out be-
tween the analytical solution and the numerical integration results. In the case of 
error analysis, absolute and relative errors of the problem have been presented. A 
numerical algorithm has been developed by MATLAB software 2013R and used for 
analyzing the result. It is established that the results of the comparison guaranty 
the ability and the accuracy of the present method.
Key words: simple pendulum, time period, large angle, numerical integration, 

error analysis

Introduction

Simple pendulum is one of the most popular examples of a simple mechanical system 
as its set-up, but difficult when someone wants to compute the factors which act on its motion, 
like time period, T, angle of oscillation, θ, amplitude, acting forces, and its energy [1, 2]. This 
simple mechanical system (simple pendulum) oscillates with a symmetric force due to gravity 
acting on it as a restoring force, as illustrated in fig. 1 [3]. Most of these procedures are based 
on the analysis of the non-linear differential equation is given [4, 5]:

2

2
d g sin 0 
d Lt
θ θ+ = (1)

where g is the acceleration due to gravity, L – the length of the pendulum, and θ – the angular 
displacement (in radians). The time period for a simple pendulum has been derived at small 
angle approximation, sinθ = θ, eq. (1) becomes linear differential equation and have a simple 
solution as T =2π(g/L)1/2. But when the angular displacement amplitude of the pendulum is large 
enough that the small-angle approximation no longer holds, and then the equation of motion 
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must remain in its non-linear form. For this initial condition, the analytical solution can only be 
obtained numerically (with arbitrary accuracy). Conservation of energy can be used to quickly 
arriving the same simple form of this differential equation [3, 6]:

E T V= + (2)
where E is the total energy
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the kinetic energy

 ( )g 1 cosV m L θ= −

the potential energy.
At the lowest point of the trajectory, the zero of potential energy was taken, also the 

initial conditions for the given ODE θ(0) = θM and dθ/dt(0) = 0, choose for simplicity:
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Multiplying both sides of eq. (3) by 2/mL2, rearranging and setting the square root of 
each sides of eq. (3):

( )1/2d 2g cos cos
d Mt L
θ θ θ= − (4)

Rearranging eq. (4) and taking the integral of both sides:
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The time required for θ to increase from 0 to θM is (t = T/4), where T is a time of one 
period, so we can write eq. (5):
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Figure 1. Scheme of a simple pendulum motion
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For simplicity, these substitutions were used
 cosθ = 1 – 2sin2(θ/2), and cosθM = 1 – 2sin2(θM/2) thus

1/2
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   ∫ (7)
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The integral in eq. (8) is the form of first kind elliptic integral [7]. The elliptic integral 
in eq. (8) can be expanded, by the series expansion obtain:

2 41 92  1 sin sin  
g 4 2 64 2

M MLT θ θ    = + +    
    

(9)

Solutions of the problem

Several approximation schemes have been established to examine the large amplitude 
oscillations of a simple pendulum, and the different approximations have been suggested for 
calculating its large-angle period with precision [8-11]. In this section, we will present a numer-
ical solution the problem. Using numerical quadrature technique for evaluating the integrations 
on both eqs. (7) and (8) for T as a function of θ or φ, this solution is also done with analytical 
approximation by literatures [12-14].

There are many numerical integration methods to evaluate composite integrals; in this 
paper, we use two numerical quadrature methods, Simpsons 3/8 method, and Boole’s method 
[15-23].

If we set:
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for the integral in eq. (7), and applying Simpson’s 3/8 method:
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where O(h4) = – θM/80 h4f 4(ξ), where 0 ≤ ξ ≤ θM. 
Similarly, by applying Boole’s method:
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where O(h6) = – 2θM/945 h6f 6(ξ), where 0 ≤ ξ ≤ θM.
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By the same manner:
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for eq. (8) and applying Simpson’s 3/8 methods:
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where O(h4) = – θM/80 h4f 4(ξ), where 0 ≤ ξ ≤ θM.
Similarly, Boole’s method gives:
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where O(h6) = – 2θM/945 h6f 6(ξ), where 0 ≤ ξ ≤ θM.
The present work focused on the time period of simple pendulum as a function of its 

starting amplitude at a large angle numerically. Now if we set L = 0.1 m, g = 9.8 m/s2, for both 
integral eqs. (7) and (8), the results of Simpson’s 3/8 and Boole’s method will be compared 
with the expanded series in eq. (9) which is an analytical solution of the problem, and absolute 
errors, EA, and relative errors, RA, are calculated:
 Exact value-Numerical value  and

Exact value
A

A A
EE R= =

The obtained results of eqs. (10)-(13) are tabulated in tab. 1, where θM = π/2 and the 
exact solution for the given angle is 0.736348344103256 (actually, this is not the totally exact 
value, because eq. (9) is the series expansion, but the series at five order and above do not get 
the solution) [22].

For making a comparison and testing accuracy of the present methods, firstly if we set 
n = 600 and θM  = π/2, results are given in tab. 1, one can obtain that absolute and relative errors 
are 10–2, for Simpson’s 3/8 and Boole’s methods for integral eqs. (7) and (8).
Table 1. Numerical results compared with the exact solution

n = 600, θM = π/2 Numerical value Absolute error, EA Relative error, RA 

Simpson’s 3/8 method in eq. (10) 0.721257812446209 1.5091 ⋅ 10–2 2.0494 ⋅ 10–2

Boole’s method in eq. (11) 0.721186718860959 1.5162 ⋅ 10–2 2.0590 ⋅ 10–2

Simpson’s 3/8 method in eq. (12) 0.748911905263186 1.2564 ⋅ 10–2 2.6458 ⋅ 10–2

Boole’s method in eq. (13) 0.748911905263198 1.2564 ⋅ 10–2 1.7062 ⋅ 10–2

Similarly, for the mentioned equation, where n = 600 and θM  = π/4, and the exact solu-
tion for the given angle is 0.659849092173693, the numerical results and error analysis yields 
in tab. 2. The results for eq. (7) are approximately same as for θM  = π/2, but for eq. (8) the results 
have more accuracy with absolute and relative errors 10–4.

From tabs. 1 and 2 we can conclude that both numerical quadrature methods are ac-
curate and suitable for solving simple pendulum integra eqs. (7) and (8) and make comparison 
between them and equation (9) which gives the results in tabs. 1 and 2, these tables show the 
accuracy of the method. However, the accuracy of the results depends on increase iteration 
number n. We can notice that while the number of iterations n are increased, then better more 
accurate have been found.
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Table 2. Numerical compared with the exact solution for a quarter angle
n = 600, θM = π/4 Numerical result Absolute error, EA Relative error, RA

Simpson’s 3/8 method in eq. (10) 0.636653768717357 2.3195 ⋅ 10–4 3.5152 ⋅ 10–4

Boole’s method in eq. (11) 0.636593993065055 2.3255 ⋅ 10–4 3.5243 ⋅ 10–4

Simpson’s 3/8 method in eq. (12) 0.66002367440478 1.7458 ⋅ 10–4 2.6458 ⋅ 10–4

Boole’s method in eq. (13) 0.660023674404781 1.7458 ⋅ 10–4 2.6458 ⋅ 10–4

Conclusion

The time period of a simple pendulum with a large angle was modeled mathematical-
ly, and the problem was verified. The exact solution the problem was given by the expanded se-
ries. Results are shown for two different methods of integral equations. The result was obtained 
by using a numerical integration technique based on Simpson’s and Boole’s method. For the 
numerical integrations, an algorithm is constructed, and the programs are written by MATLAB 
software 2013Ra. Good approximations were obtained for the problem with two different large 
angles when compared with the exact analytical solution. It is worth mentioning that the tech-
nique can be used as a very accurate algorithm for the presented type of time period of simple 
pendulum converted to integral equations.
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