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This attempt discusses mixed convection Oldroyd-B nanoliquid-flow over a doubly 
stratified surface in existence of activation energy. Impacts of Brownian diffusion 
and thermophoretic are additionally accounted. The non-linear frameworks are 
simplified by suitable variables. Shooting method is utilized to develop a numeric 
solution of resulting issue. Graphs have been composed just to explore that how 
concentration and the temperature are impacted by different developing flow fac-
tors. Mass and heat transport rates are additionally tabulated and dissected. Fur-
thermore, the temperature and concentration distributions are enhanced for larger 
thermophoresis parameter.
Key words: Arrhenius activation energy. mixed convection flow, nanoparticles, 

double stratification, Oldroyd-B fluid, binary chemical reaction

Introduction

The nanoparticle of size under 100 nm deferred into a standard fluid is named as nan-
oliquid. The essentialness of nanofluid is expected to their distinctive thermophysical qualities. 
Nanofluids show enormous capacity to lead power and heat, so it has a critical impact in indus-
try. Nanoliquids have gotten extraordinary enthusiasm for its wide applications, for example, 
electronic chip cooling, hybrid powered machines, progressed atomic frameworks, laser-helped 
sedate conveyance, solar liquid heating, microchips, excessively proficient magnets and opto-
electronics and so on. Just because, Choi [1] exhibited the term nanoparticle inundated into a 
common fluid. Buongiorno [2] presented a numerical model for warm transport in nanoliquid, 
including the impacts of Brownian scattering and thermophoretic dispersion. Further applicable 
examinations on nanofluids are -cited by the investigations [3-18].

Species of concentration contrast exist in a blend subject to mass transport wonder. By 
fluctuating centralization of species in blend move those from high focus locale to low fixation 
area. Least mandatory vitality that is needed by reactants before occuring substance reaction is 
termed as activation energy. Mass move mechanism with concoction reaction with activation 
energy by and the large discovers practicals in mechanics of oil and water emulsions, synthetic 
building, nourishment preparing, etc. Right off bat common convection flow of paired blend in 
porous space subject to initiation vitality is proposed by Bestman [19]. Makinde et al. [20] nu-
merically examined insecure normal convective stream with enactment vitality and nth-request 
response. Maleque et al. [21] discussed endothermic/exothermic response in mixed convective 
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streams with initiation vitality. Changed Arrhenius work has been utilized by Awad et al. [22] 
so as to consider flimsy pivoting stream of parallel liquid past a rash twisted surface. Casson 
liquid stream subject to initiation vitality is tended to by Abbas et al. [23]. Shafique et al. [24] 
inspected numerically the pivoting viscoelastic stream fusing artificially receptive species with 
actuation vitality. Anuradha and Yegammai [25] talked about paired concoction response and 
initiation vitality in radiative hydromagnetic nanoliquid-flow by vertical surface. Khan et al. 
[26] analyzed impacts of enactment vitality and entropy in radiative nanomaterial flow. Further 
ongoing endeavors on activation energy are -cited by attempts [27-30].

Inspired by aforementioned attempts, the motivation here is to explore importance 
of binary chemical response and activation energy in mixed convection Oldroyd-B nanoliq-
uid-flow with solutal and thermal stratifications. Random movement and thermophoretic phe-

nomenas occur in the existence of nanofluid. Result-
ing scientific framework is understood numerically via 
shooting technique. Concentration, temperature, Sher-
wood and Nusselt factors are also analyzed.

Problem development

We examine 2-D doubly stratified mixed convec-
tion Oldroyd-B nanoliquid-flow with binary chemical 
response and activation energy. Flow is induced by ex-
tending sheet at y = 0. Flow occupies the region y > 0,  
fig. 1. Brownian dispersion and thermophoretic impacts 
are likewise present. The governing expressions of Old-
royd-B nanoliquid-flow [28, 31]:
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Subjected boundary conditions [31]:
( ) ( ) ( ), 0, , at 0w w wu U x v T T x C C x y= = = = = (5)

( ) ( ), 0 1 ,0 10, , as  u T T x T A x C C x C B y∞ ∞ ∞ ∞→ → = + → = + →∞ (6)
where u and v are the stand for velocities in x- and y-axes, n – the for fitted rate constant,  
Ea – the activation energy, µ – the dynamic viscosity, (ρc)f – the heat capacity of fluid, DB – the 
Brownian factor, κ – the Boltzmann constant, T – the temperature, λ1 – the relaxation time,  

Figure 1. Flow model and  
co-ordinate system
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n = µ/ρ – the kinematic viscosity, βC – the concentration expansion factor, (ρc)p – the effective 
heat capacity of nanoparticles, kr – the reaction rate, k – the thermal conductivity, λ2 – the retar-
dation time, g – the gravitational acceleration, DT – the thermophoretic factor, βT – the thermal 
expansion factor, ρ – the density, C – the concentration, α = k/(ρc)f – the thermal diffusivity, 
T∞ and Tw – the ambient and surface temperatures, and C∞ and Cw – the ambient and surface 
concentrations. Thus:

( ) ( ) ( ), 0 1 ,0 1, ,w w wU x cx T x T M x C x C N x∞ ∞= = + = + (7)

where c, A1, B1, M1, N1, T∞,0, and C∞,0 stand for positive constants. Non-dimensional variables 
are defined:
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Equation (1) is now identically verified and eqs. (2)-(7) yield:
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where Nb stands for Brownian motion parameter, β2 and β1 – the Deborah numbers in terms of 
retardation and relaxation times, ε2 – the solutal stratification, Rex – the local Reynolds number, 
δ – the temperature difference parameter, λ – the mixed convection number, Nt – the thermo-
phoresis number, Grx – the Grashof parameter, E – the non-dimensional activation energy, σ 
– the chemical reaction parameter, N – the buoyancy ratio, Pr – the Prandtl number, ε1 – the 
thermal stratification, and Sc – the Schmidt number. These parameters are expressed:
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Local Nusselt, Nux, and the Sherwood, Shx, factors:
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Graphical results and discussion

The arrangements of administering framework are figured by utilizing shooting strat-
egy. This segment presents impacts of various pertinent parameters including Deborah numbers 
β2 and β1, mixed convection parameter, λ, thermophoresis parameter, Nt, activation energy, E, 
Brownian movement parameter, Nb, warm stratification parameter, ε1, concoction response pa-
rameter, σ, and solutal stratification, ε2, on temperature, θ(η), and concentration, ϕ(η). Variation 
in temperature, θ(η), for varying Deborah number, β1, is appeared in fig. 2. Here temperature 
profile is more for bigger Deborah number, β1. Impact of Deborah number, β1, on temperature, 
θ(η), is shown in fig. 3. It is plainly indicated that temperature, θ(η), is diminishing capacity of 
Deborah number, β2. A correlation of figs. 2 and 3 shows that β1 and β2 have very inverse conse-
quences for temperature field. Physically β1 includes unwinding time while β2 comprises of hin-
drance time. Bigger unwinding time prompts higher temperature while bigger hindrance time 
compares to a lower temperature. In this way an improvement in β1 produces more temperature 
while bigger β2 portrays less temperature. Figure 4 presents bigger estimations of blended con-
vection parameter, λ, comparing to bring down temperature, θ(η). Figure 5 presents impact of 
warm stratification, ε1, on temperature, θ(η). Temperature θ(η) is diminishing capacity of the 
warm stratification parameter ε1. Physically nearness of warm stratification impact diminishes 
viable temperature contrast among surface and encompassing liquid which prompts a flimsier 
temperature. It is additionally seen that instance of recommended surface temperature is re-
couped when ε1 = 0. Thermophoresis and Brownian movement impacts on temperature, θ(η) 
are exhibited in figs. 6 and 7 individually. Temperature profile is higher for bigger estimations 
of thermophoresis and Brownian movement. Physically nearness of nanoparticles builds warm 
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conductivity of liquid. An expansion in thermophoresis and Brownian movement compares to 
high warm conductivity. Such high warm conductivity makes upgrade in the temperature field. 
Figure 8 shows variety in concentration, ϕ(η), for different estimations of Deborah number, β1. 
Here concentration is improved with expansion in the Deborah number, β1. Figure 9 displays 
that bigger Deborah number, β2, produces a decrease in concentration, ϕ(η). Figure 10 shows 
change in concentration, ϕ(η), comparing to various estimations of blended convection pa-
rameter, λ. Clearly concentration, ϕ(η), is lower for bigger estimations of blended convection 
parameter, λ. Impact of solutal stratification, ε2, on concentration, ϕ(η), is plotted in fig. 11. It is 
unmistakably noted that concentration, ϕ(η), is reduced when solutal stratification, ε2, enlarges. 
For ε2 = 0, recommended surface concentration circumstance is accomplished. Impact of ther-
mophoresis parameter, Nt, on concentration, ϕ(η), is shown in fig. 12. Concentration, ϕ(η), is 
expanding capacity of thermophoresis parameter, Nt. Figure 13 shows that concentration, ϕ(η), 
is lower for bigger estimations of Brownian movement parameter, Nb. Figure 14 delineates that 
bigger estimations of compound response parameter, σ, prompts lower concentration. Figure 15 
clarifies effect of E on concentration, ϕ(η). An improvement in E prompts higher concentration, 
ϕ(η). Table 1 presents numerical estimations of heat move rate – θ′(0) for particular estimations 
of blended convection parameter, λ. It is seen that heat move rate is higher when expanding es-

Figure 6. Curves of θ(η) for Nt Figure 7. Curves of θ(η) for Nb

Figure 8. Curves of ϕ(η) for β1 Figure 9. Curves of ϕ(η) for β2

Figure 10. Curves of ϕ(η) for λ Figure 11. Curves of ϕ(η) for ε2
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timations of blended convection parameter, λ, are accounted. Table 2 delineates mass move rate 
–ϕ′(0) for particular values of blended convection parameter, λ. Here we saw that mass move 
rate has higher estimations for bigger blended convection parameter, λ. 

Table 1. Heat transfer rate –θ(0) for varying λ  
when β1 = β2 = 0.2, N = 0.1, δ = 0.3, E = 0.5,  
Nt = 0.2, Pr = Sc = 1.0, Nb = 0,5, and ε1 = ε2 = 0.3 

λ 0.0 0.2 0.4 0.6
–θ′(0) 0.66692 0.67715 0.68496 0.62975

Conclusions

Importance of double stratification in mixed convection Oldroyd-B nanoliquid-flow 
with binary chemical response and activation energy is inspected. Both temperature and con-
centration are enhanced when we increment β1. Both temperature and concentration have been 
reduced for larger estimations of mixed convective number. Impacts of solutal and thermal 
stratification numbers on concentration and temperature, respectively are similar. The present 
results reduces to Newtonian fluid-flow situation when β1 = β2 = 0. 
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