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Any physical laws are scale-dependent, the same phenomenon might lead to de-
bating theories if observed using different scales. The two-scale thermodynamics 
observes the same phenomenon using two different scales, one scale is generally 
used in the conventional continuum mechanics, and the other scale can reveal 
the hidden truth beyond the continuum assumption, and fractal calculus has to be 
adopted to establish governing equations. Here basic properties of fractal calculus 
are elucidated, and the relationship between the fractal calculus and traditional 
calculus is revealed using the two-scale transform, fractal variational principles 
are discussed for 1-D fluid mechanics. Additionally planet distribution in the frac-
tal solar system, dark energy in the fractal space, and a fractal ageing model are 
also discussed. 
Key words: two-scale fractal dimension, two scale mathematics, fractal space, 

fractal variational theory, local property

Introduction 

We begin with an ancient Chinese fable called as Blind Men and Elephant, all blind 
men had no idea of an elephant, and inconsistent descriptions were given after their feeling the 
elephant at different parts. This fable tells us that we should not take a part for the whole. In ac-
ademic experiments, it is impossible to measure each point of the studied problem, and various 
assumptions have to be made to predict its whole property. The most used one is the continuum 
assumption, which is the foundation of mechanics and thermodynamics, and differential models 
as well. The continuum models of course cannot study the effect of an unsmooth boundary or 
a porous medium.

There is also an ancient Chinese saying that seeing is believing, however, in most 
scientific phenomena, seeing is not always believing. The same phenomenon can lead to debat-
ing theories when measured on different scales. To elucidate this important fact, we consider a 
weight lifter holding silently a weight as shown in fig. 1. Everyone knows that: 

	 Work = force × displacement

* Corresponding author, e-mail: hejihuan@suda.edu.cn



He, J.-H., et al.: New Promises and Future Challenges of Fractal Calculus ... 
660	 THERMAL SCIENCE: Year 2020, Vol. 24, No. 2A pp. 659-681

Because the weight lifter does move the 
weight, the displacement is zero, so the work 
done by the man should be zero, however this is 
not the fact, the man must have done work, and 
we have to measure the done work on a much 
smaller scale, saying on a molecule scale. Un-
der such a small scale, all fibers in hand mus-
cles have done work. 

In biology, there are debating laws for the 
metabolic law [1, 2], if a cell is considered as 
a continuum, we have Rubner’s 2/3 law; if we 
consider the cell surface is not smooth, we ob-
tain the Kleiber’s 3/4 law. All disputes stopped 
when a fractal cell is adopted [3]. The well-
known wave-particle dualism arises also in dif-
ferent scale observations. To reveal the hidden 
truth or to eliminate the inconsistency arising in 
different scale observations, two-scale thermo-

dynamics is needed to obverse a 
same phenomenon using two dif-
ferent scales [4, 5]. To further un-
derstand the two-scale concept, 
we consider a drop of red ink in 
water [6] as illustrated in fig. 2. 

Water is a continuum if a 
large-scale is used, and the mo-
tion of the red ink follows laws 
in fluid mechanics, however, flu-
id mechanics cannot elucidate the 
mechanism of the red ink’s diffu-

sion. We, therefore, need a smaller scale, saying a molecule’s size, which results in a discontin-
uous medium of water, and fractal calculus has to be adopted [7].

A brief introduction continuous space and fractal space

As everyone knows differential equations, which are actually derived based on smooth 
space. Newton’s mechanics is established on a smooth 3-D spatial space, Einstein’s theory as-
sumes a smooth 4-D spacetime. The smooth space or spacetime assumption can never predict 
any properties arising in unsmooth space or spacetime. El Naschie’s E-infinity theory [8-10], 
on the other hand, considers a fractal and discontinuous spacetime with an average fractal di-
mensions of 4.236. 

Distinction among El Naschie’s fractal spacetime [8-10] with Newton 3 spatial world 
and Einstein’s 4 space-time is in the dimensions, see fig. 3:

3Dimensions = 3 1 4.236
Newton

Einstein
El Naschie

φ+ + ≈

(1)

Work = force × displacement

Weights Weights

No work

has been done!

Has this man

done work?

Figure 1. Two-scale cartoon showing that 
observations with different scales result in 
opposite results for the same phenomenon

The red ink moves determinately

Red ink's motion

The red ink moves randomlyWater molecule

Figure 2. A drop of red ink in a moving reviver; the motion of 
the red ink due to the moving river and the red ink's diffusion 
in water seems to be random for all observers, however, its 
motion on a molecule’s scale is determinate
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where ϕ is the golden mean given:
1 5 1

1 21 11 11
1

φ −
= =

+
+

+
+

(2)

We call the number, 4.236, as the El Na-
schie number:

3
3

14 4.236D φ
φ

= + = ≈ (3)

which is a number of harmony and appears 
everywhere from mathematics to high energy 
physics, for example, the absolute zero tem-
perature can be theoretically predicted using El 
Naschie number: 

4/3
0 1 (4)(10) 273.15 CT D= − = − ° (4)

El Naschie number is widely appeared in from 
nature to arts (e. g. architecture and painting). Figure 
4 shows the golden mean and El Naschie number in 
a hand of human being, arranged by Fibonacci se-
quence.

Planet distribution in  
the fractal solar system

Fibonacci sequence appears everywhere in na-
ture and has wide applications, it is inconceivably em-
bodied in a variety of wildlife (e. g. sunflower) and 
modern physics as well, for example, the average frac-
tal dimensions of our spacetime can be also obtained 
through Fibonacci numbers:

2 3, ,1, 1 , 2 , 4φ φ φ φ φ+ + + (5)

Nature always gives astonishing similarity as that in the planetary sequence of our 
solar system: 
	 0.386, 0.723, 1.00, 1.60, 2.80,...	 (6)

where the number is the distance between the Sun and planet or asteroid belt in unit of AU. This 
sequence is very much close to the following Fibonacci sequence:

2 2, ,1,1 , 0.382,0.618,1.00,1.618,2.618φ φ φ φ+ = (7)

Figure 5 shows an ideal planet distribution by Fibonacci numbers ϕ2, ϕ, 1, 1 + ϕ, 2 + ϕ,  
4 + ϕ3, where the radius of the Earth’s orbit is taken as 1 AU. We, therefore, guess that planet 
distribution follows the golden mean law based on Fibonacci sequence.

Quantum world Visible world

Quantum mechanics Newton's mechanics

Chaotic Deterministic

2
E mc�

2 21

2
E mcf� ϕ5

21

2
E mv�

1 nm 1000 nm

Figure 3. El Naschie’s theory bridges Newton 
mechanics and quantum mechanics

1

1.618

2.618

4.236

Figure 4. Golden mean and El Naschie 
number in a hand 1/ϕ = 1.618,  
1/ϕ2 = 2.618, 1/ϕ3 = 4.236; the number 
can also be obtained from Fibonacci 
numbers 1, ϕ, 1 + ϕ, 2 + ϕ, 3 + 2ϕ = 4 + ϕ3
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We argue the following unproved laws.
Spiral Law:
The solar system has a Fibonacci spiral, which is called in this paper as the gravitational spiral. 
A periodic and stable body cuts the spiral once per period, and at the cut point, the body has 
equal gravitational energy and kinetic energy. All members of solar system accelerate due to 
gravitation and have a tendency to spiral downward toward the Sun.
Golden mean Law: 
Planet distribution on the gravitational spiral follows the Fibonacci sequence.
Further discussion on gravitational spiral will be given in a separate paper. 

Fractal boundary and fluctuation dimensions

According to El Naschie’s theory [8, 9], the average Hausdorff dimensions of our 
fractal spacetime:

3
3

1 14 4 4.236 (3 1) 0.236
14 14
4

D φ
φ

= + = + = ≈ = + +
+

+
+

(8)

R2.6
2

R1.6
2

R1

R0.62

R0.38

Figure 5. Ideal planet distribution by Fibonacci numbers

4-D much

smaller world

4-D world

Figure 6. Fractal spacetime model with self similarity [11]
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Explanation of eq. (8) can be explained by a fractal Hilbert cube spacetime model 
given in fig. 6, each cascade in the hierarchical spacetime is a mini 4-D spacetime, the quantum 
work is the inner small cascade, our solar system might be in some a cascade in the middle, some 
a distant galaxy might be in a cascade larger than 
our world. All theories established on some a cas-
cade becomes invalid in its adjacent cascades ex-
cept El Naschie’s fractal E-infinity theory, which 
combines Newton’s mechanics with quantum me-
chanics. A mini-symposium on fractal spacetime 
and dark energy in 4th International Symposium 
on Non-Linear Dynamics was held in Shanghai, 
China on October 30, 2012, for celebrating El Na-
schie’s greatest finding, see fig. 7.

All of our previous theories except El Na-
schie’s fractal spacetime theory were established 
either on smooth 3-D space or smooth (3+1)-D 
spacetime, where time is 1-D. Now a question 
arises, why does our spacetime have dimensions 
of 4.236? Everyone can feel 3-D spatial space 
plus 1-D time. We have now additional dimen-
sions of 0.236, which is the dimension fluctuation 
of our fractal spacetime. 

To understand dimension fluctuation, we 
consider an extremely large surface with a fractal 
boundary at an extremely small scale, see fig. 8. 
The Hausdorff dimensions of its boundary:

     
ln 4 1.2618
ln 3

=   (9)

What is the dimension of a 3-D cube bound-
ary? This is a trivial question since it is clearly an 
area, i. e. a surface which is 2-D. That means:

	 2-D (boundary) + 1 = 3-D (cube)	 (10)

Next we ask a second trivial question, namely what is the dimension of the boundary 
of a 2-D surface? It is obviously a 1-D line:
	 1-D (boundary) + 1 = 2-D (surface)	 (11)

Finally what is the dimension of the boundary of a line? This is evidently 0-D point. That 
means:
	 0-D (boundary) + 1 = 1-D (line) 	 (12)

It seems natural that by induction one could write a general expression for the previ-
ous form:
	 D (boundary) + 1 = n 	 (13)
where n is the dimension of the geometrical object for which we would like to know the di-
mension of its boundary. This is a trivial case of induction. However what if we want to extend 
this formula below a point just as we usually extended it above a 3-D cube? We routinely deal 

Figure 7. El Naschie’s photo appearing in a 
historical conference poster with Cantor set, 
the symbolic golden mean and the fractal 
Hilbert cube spacetime model

Figure 8. Fractal boundary with fractal 
dimensions of ln4/ln3
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in higher geometry with 4-D and n-D cubes as discussed by Coxeter and studied thoroughly in 
the context of E-infinity theory [8, 9]. In this case we use induction say that the boundary of a 
point has a dimension [8-10]:

D D(0) 1 0 1 1= − = − = − (14)
The procedure can continue and we have a negative 3-D space inside a point. To il-

lustrate the concept, we consider a line between the Earth and the Sun, the dimensions of the 
terminals of the line are zero, however, inside the Sun the space is a –3 dimensional one if we 
observe it from the Earth. 

Now we have a fractal boundary as illustrated in fig. 3, the dimensions of this surface 
is not 2:

ln 4 (boundary) 1 2.2618 2 0.2618
ln 3

+ = = + (15)

where 0.2618 is the fluctuation of plane dimension. 
Now it is easy to understand the 0.236 dimension fluctuation in El Naschie’s fractal 

spacetime. The boundary of our spacetime must be non-smooth, where about 95.5% of the ener-
gy in the cosmos is hidden on the boundary, which pull some of the cosmic boundary outward, 
and the cosmic expansion velocity can be as large as light velocity, this partly agrees with the 
Big Bang theory. While some part of the concave boundary of our space will shrink. 

Dark Energy in the fractal space

As we know that Newton’s 3-D space is an approximate one, we assume that the 
spatial dimension is relative to π. The spatial space consists of the planar section as shown in 
fig. 8 and the height. The Earth surface can be considered as the boundary of the spatial space:

2 2.0943950666667
3
π
× = (16)

The height dimension: 
                                                   π – 2 = 1.1415926535898 	 (17)

The total spatial dimension: 

2 ( 2) 3.23598775598
3
π
× + π− = (18)

According to El Naschie’s fractal Cantorian space-time theory [8, 9], the average frac-
tal dimensions of our real space-time is 4.236, this replies a spatial world with fractal dimen-
sions of 3.236, very closed the value above. In any observable scales, our universe resembles a 
continuous 4-D spacetime, however, on quantum scale, it becomes discontinuous. 

El Naschie predicted that there are about 95.5% dark energy hidden in the fractal 
boundary of our space; 

Einstein’s energy-mass equation reads:

	 E = mc2 	 (19)
This equation is obtained from a smooth 4-D spacetime. For our fractal spacetime, 

the total energy is the sum of two basically quantum parts, namely that of the quantum particle 
energy [12, 13]:

5 2 21 1( )
2 22

E O mc mcφ= ≈ (20)
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and that of the quantum wave energy: 

221( )
22

E D mc≈ (21)

2 23 3Dark Energy
13 17 115 11 1292

1+

mc mc≈ =
π +

+
+

+
+



(22)

Fractal medium and fractional calculus 

God created the solids, the devil created their boundaries (Wolfgnang E. Pauli), a 
fractal boundary always leads to astonishing properties which will never behave in smooth 
boundary as shown in Majumder et al.’s experimental observation [14]. Majumder et al. [14] 
found that liquid-flow through a membrane composed of an array of aligned CNT is 4 to 5 orders 
of magnitude faster than would be predicted from conventional fluid-flow theory. The finding is 
of course interesting, but why? The main problem is on scale or dimension. The conventional 
fluid-flow theory is assumed to be continuous on observational scales with integer dimensions, 
while the studied problem is on nanoscales with fractal dimensions. Any theories established on 
larger scales become invalid for smaller cases as shown in Majumder et al.'s [14] experimental 
observation. Any porous media and nanoscale materials (e. g. nanofiber membrane) can be ap-
proximately considered as fractal media, where continuum assumption is prohibited. 

There are many definitions on fractional derivatives. A systematical study of various 
fractional derivatives is given by Yang in his monograph [15], fractional calculus has seen wide 
applications, see for example, fractional cable [16], fractional vibration [17], fractional nano-
fluid [18], fractional electro-MHD [19], fractional electro-osmotic flow [20], fractional KdV 
equation [21, 22], fractional thermoelasticity [23], fractional MHD [24], and fractional soliton 
dynamics [25]. 

The variational iteration method was first used to solve fractional differential equa-
tions in 1998 [26]. Hereby we will introduce the basic properties of fractional derivatives by the 
variational iteration method [27-30]. 

 We consider the following linear equation of nth order:
 	 u(n) = f(t)	 (23)

By the variational iteration method [27-30], we have the following variational itera-
tion algorithms: 
–– variational iteration algorithm-I

0

1 ( )
1

1( ) ( ) ( 1) ( ) ( ) ( ) d
( 1)!

t
n n n

m m m m
t

u t u t s t u s f s s
n

−
+  = + − − − −∫ (24)

–– variational iteration algorithm-II [27-30]

0 0

1 1
1 0 0

1 ( 1)( ) ( ) ( 1) ( ) ( )d ( ) ( ) ( )d
( 1)! ( )

t tn
n n n

m m m
t t

u t u t s t f s s u t s t f s s
n nΓ

− −
+

−
= − − − = − −

−∫ ∫ (25)
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Note: u0 must satisfy the initial/boundary conditions. 
For a linear equation, we have the following exact solution:

0

1 ( )
0 0

1( ) ( ) ( 1) ( ) ( ) ( ) d
( 1)!

t
n n n

t

u t u t s t u s f s s
n

−  = + − − − −∫ (26)

or

0

1
0

( 1)( ) ( ) ( ) ( )d
( )

tn
n

t

u t u t s t f s s
nΓ

−−
= − −∫ (27)

where u0(t) satisfies the boundary/initial conditions. 
According to variational iteration algorithm-I, we introduce an integration opera-

tor In defined:

0

1 ( ) 1
0 0

0

1 1( ) ( ) ( ) d ( ) ( ) ( ) d
( 1)! ( )

t t
n n n n

t t

I f s t u s f s s s t f s f s s
n nΓ

− −   = − − = − −   −∫ ∫ (28)

where f0(t) = u0
(n)
    (t). 

We can define a fractional derivative in the form:

0

1
0

d d 1 dD D ( ) ( ) ( ) ( ) ( ) d
( )d d d

n n n tn n n
t t n n n t

f I f I f s t f s f s s
nt t t

α α α α

Γ α
− − −  = = = − − − ∫ (29)

In literature, eq. (29) was called as He’s fractional derivative [31-42], and it has been 
applied to biomechanics [38], nanoscale thermodynamics [39], Zakharov-Kuznetsov equation 
[31], KP-BBM equation [32], solitary theory [33], non-linear vibration [34], coast protection 
[35, 36], high-order sub-diffusion broblem [37], fractional optimal control problems [38], drug 
release [39-41], and biomaterials [42]. 

Dimension is everything and two scale fractal geometry

Dimension is everything, and the dimension values depend upon the scale which we 
use to obverse various phenomena. To show this, we consider a smooth road. It is of course 
2-D on scale of wheel diameters, but it becomes 1-D when the scale tends to very large one, 
e. g., 1 km. When the scale becomes infinitely large, the road becomes zero dimension, i. e., 
a point. On the other hand, if the scale tends to be extremely small, i. e., few nanometers, the 
road becomes totally unsmooth, and its dimension values will be larger than 1 and smaller than 
3. So with different scales, we have different dimensions for a same subject. We must choose a 
suitable scale or dimension to study a given problem. The 1-D model, for example, can never 
predict the properties of 2-D flows, and any integer dimensions can never predict properties of 
a fractal medium. 

A 2-D model can never describe the 3-D properties, and a 4-D eye can see all things 
inside a house from its outside, which is considered impossible in view of the 3-D world. The 
dimension or the scale is everything for the all physical laws. There is a science fiction, saying 
there was a 4-D alien, who stole a heart from a man without dissection. This phenomenon is 
unbelievable in a 3-D space, but it can happen in a 4-D space [43]. 

Physical laws depend upon scales, different scales lead to different laws for a same 
phenomenon. When you observe the motion of the Moon from the Earth, its trajectory follows 
Newton’s gravity law, but if you watch it from an infinite far star, its motion becomes stochastic 
and an uncertainty principle is found like that for an electron:

	 ΔxΔP < C 	 (30)
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where ΔP is the momentum change across 
the distance Δx, C is a constant. The deriva-
tion of eq. (30) was available in [43]. As an-
other example, we consider the water pres-
sure under the depth of h. If we consider the 
water as a continuum on a large-scale, the 
water pressure scales with its depth:
                               p ∝ h                       (31)

However, if we watch the water on a 
molecule’s size, saying 0.1 nanometers, an 
object with that size might have no water 
pressure, see fig. 9:
                                p → 0                      (32)

To understand this phenomenon, we just consider a small ant under sands, the ant in 
the porous space is subject to no pressure from sands.

Generally on a macro-scale, we have Newton’s law for continuum mechanics. On a 
smaller scale, for example a scale of water molecule’s size, water becomes discontinuous and 
all laws based on continuous space or continuous time become invalid. Generally we can use 
Mandelbrot’s fractal theory [44] to model the discontinuous phenomena [45-60]. Newton’s cal-
culus is established on an infinitesimal assumption and the function is differentiable, however, 
the molecule’s motion in water at an infinitesimal interval of time or distance is not differen-
tiable. For 1-D motion, a function can be expressed as ϕ(t, x) in a continuous space, however 
a function in a fractal space can be expressed as ϕ(tα, xβ) instead of ϕ(t, x), where α and β are 
fractal dimensions, which will be discussed later.

The porous medium or a space with unsmooth boundaries can be considered as a frac-
tal space. However the fractal geometry requires self-similarity on any scales [44], which can be 
not found in nature, there must be a minimal level and a maximal level for a fractal-like subject, 
for example, a tree is a fractal-like one, however, there must be two thresholds for the minimal 
and maximal cascades. If a porous medium is considered as an approximate fractal pattern, e. g. 
a fractal Sierpinski carpet as illustrated in fig. 10, it implies actually the porous structure can be 
modelled by two adjacent levels of the fractal 
pattern [4, 5]. For example, pure water is con-
tinuous on a macro scale as shown in fig. 10(a), 
and all laws in fluid mechanics work, however, 
on a molecule scale, water becomes discontin-
uous, and it can be modelled by fig. 10(b), all 
phenomena arising in a molecule-scale obser-
vation can be modelled by fractal calculus [7]. 
So two scales are enough for description of wa-
ter’s porous structure. 

The two-scale dimension is defined [4, 5]:

0
0

A
A

α α= (33)

where α is the two scale dimensions for the smaller scale to measure the porosity, fig. 10(b),  
α0 – the dimension for the large-scale for an approximate continuity, fig. 10(a), and A and A0 are 
areas for fig. 10(a) and fig. 10(b), respectively. The two-scale dimension:

Figure 9. Water pressure on two difference scales, 
where the circles present water molecules, and the 
red point is a particle much smaller than that of the 
water molecule

I am a

molecule-like

ant, I suffer no

pressure from

water

P
 =

h
ρ

(a) (b) (c)

Figure 10. Fractal Sierpinski carpet; the red 
squares imply the porosity; (a) represents a 
continuum medium, (b) a porous medium, and 
(c) a fractal Sierpinski carpet
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82 1.777
9

α = × = (34)

The previous section, the two-scale fractal space is illustrated, any a motion in a frac-
tal space has the fractal property. Consider a coast, along which two animals, e. g., an ant and an 
elephant, walk from a point A to another point B with same instantaneous velocity and different 
steps. It can be understood that the ant with a smaller step requires walk a longer distance than 
that by the elephant with a larger step. So the average velocity from A to B depends upon not 
only its fractal patter and also the animal’s step size:

( )u x α∝ ∆ (35)
where u is the average velocity, Δx is the animal’s step size. 

The time needed for each step is: 
xt

u
∆

∆ = (36)

The time scale less than Δt is meaningless, the average velocity scales:
( )u t β∝ ∆ (37)

where α and β are two-scale fractal dimensions in moving direction and time, respectively. 
Before proceeding further, we first give some definitions and theorems on fractal cal-

culus for easy understanding [7, 61-64]. 
Definition 1. The distance between two points x0 and x1 in x-direction in a fractal space 

is defined:

1 0 1 0 1 0
1( , ) ( ) ,

(1 )
L x x x x x xβ

Γ β
= − >

+
(38)

where β is the fractal dimensions in x-direction, Γ is the gamma function. 
Definition 2. The time difference in a fractal time is defined:

1 0 1 0 1 0
1( , ) ( ) ,

(1 )
T t t t t t tα

Γ α
= − >

+
(39)

where α is the fractal dimensions in time. 
Definition 3. A function in a fractal space is not differentiable with respect to t and x. 
Definition 4. A function in a fractal space is differentiable with respect to tα and xβ, and 

can be expressed as ϕ(tα, xβ), which is often called as the fractal function. 
The change of ϕ across Δx or Δt can be expressed: 

( )x βφ∆ ∝ ∆ (40)

( )t αφ∆ ∝ ∆ (41)
where Δx and Δt are the smallest scales in space and time, respectively, any phenomena mea-
sured on a scale smaller than Δx or Δt are ignored. In fractal calculus, it always assumed that 
Δx ≠ 0 and Δt ≠ 0. 

Equations (38) and (39) can be also written in the following forms, respectively:

1 0 1 0 1 0
1( , ) ( ) ,

(1 )
L x x x x x xβ β β

Γ β
= − >

+ (42)

1 0 1 0 1 0
1( , ) ( ) ,

(1 )
T t t t t t tα α α

Γ α
= − >

+ (43)
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Definition 5. A fractal function has local property. Assuming that the following in-
equality holds:

0( ) ( ) ( )t t tα α αφ φ− < ∆ (44)

with |t – t0| < Δt for α, Δt > 0, we call ϕ(tα) is locally continuous a t0 on the scale of Δt. A fractal 
geometry has local continuity everywhere, however, for a hierarchy, the local continuity de-
pends upon the scale. 

Definition 6. The following local approximations hold: 

1 0 1 0 1 0
1 ( ) = + ( )

(1 )
t t t t O t tα α α

Γ α
− − −

+
(45)

1 0 1 0 1 0
1 ( ) + ( )

(1 )
x x x x O x xβ β β

Γ β
− = − −

+ (46)

The Definition 1 and the Definition 2 can be also written in the forms:

1 0 1 0( , )L x x x xβ β β β= − (47)

1 0 1 0( , )T t t t tα α α α= − (48)
Definition 7. The two scale dimension for two adjacent levels of a hierarchy is defined 

as [4, 5]:

0 0

D V
D V

= (49)

where D0 and D are dimensions on a large-scale and on a small scale, respectively, V0 and V 
are measured volumes or areas or lengths on a large-scale and on a small scale, respectively. 
Generally on a large-scale, the continuum mechanics works, but on a small scale the continuum 
assumption is forbidden. 

A hierarchy is not an exact fractal, so the two-scale dimension is needed. We just 
consider two adjacent levels of a Cantor set, when we measure it using a scale of L, it is a 
continuous line, however, when we watch it using a scale of L/3, it becomes discontinuous. 
The two-scale dimension for the adjacent levels of the hierarchy is D = 1 × 2/3 = 2/3, while its 
Hausdorff fractal dimension is ln2/ln3. In practical applications, the fractal order should be the 
value of the two-scale dimensions. 

Definition 8. Fractal derivatives with respect to tα and xβ are defined, respectively:
0

0
0 00

( ) ( )
( ) (1 ) lim

( )t t t
t

t t
t

t t t
α

α α

φ φφ Γ α
− →∆
∆ ≠

−∂
= +

∂ − (50)

0
0 0 00

( ) ( )
( ) (1 ) lim

( )x x x
x

x x
x

x x x
β

β β

φ φφ Γ β
− →∆

∆ ≠

−∂
= +

∂ − (51)

where Δx and Δt are the smallest scales in space and time, respectively, Δx ≠ 0 and Δt ≠ 0. For 
practical problems, the two-scale dimensions should be adopted for the values of α and β. 

 To elucidate the fact, we consider a man working along a coastline, which is assumed 
to be a Koch curve. If the man’s step is Δx, and its velocity is u0, the discontinuous property 
for the scale less than Δx is ignored, and the motion property depends upon its step scale. If a 
man’s step is 3Δx with the same velocity, the discontinuity, which is measured in Δx, disappears 
completely. The two-scale dimension of the adjacent hierarchical levels of the Kock curve is  
D = 4/3, while its Hausdorff fractal dimension is ln4/ln3. 
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Definition 9. The velocity and acceleration in the fractal space are defined, respec-
tively:

0 0
0

0 00 00 0

( ) ( ) ( )(1 )( ) (1 ) lim lim
(1 )( ) ( )t t t tt t

t t

L x L x x x
u t

t t t t

β
α

α α

Γ αΓ α
Γ β− −→∆ →∆

∆ ≠ ∆ ≠

− −+
= + =

+− − (52)

0
0

0 00

( ) ( )
( ) (1 ) lim

( )t t t
t

u x u x
a t

t t

β β
α

αΓ α
− →∆
∆ ≠

−
= +

−
(53)

Theorem 1. The following chain rules hold:

t x x tα β β α

φ φ∂ ∂ ∂ ∂   =   ∂ ∂ ∂ ∂   
(54)

[ ( )] uu
ut tα α

Φφ∂ ∂ ∂ =  ∂∂ ∂ 
(55)

Theorem 2. The following differential and integration hold:
m

mx m x
x

β
β β

−∂
=

∂
(56)

1
( ) ( )

1 0

x0

d
x

m m mx x x x
m

β

β β β β β

β

β
β

+ + = − +∫ (57)

Theorem 3. Fractal Taylor series is expressed:
2

20 0 0
0 0 0 02

0

d ( ) d ( ) d ( )1 1( ) ( ) ( ) ( ) ( ) +
! 2d d d

N n
n

n
n

x x x
x x x x x x x x

n x x x

β β β
β β β β β β β β

α α α

φ φ φ
φ φ

=

= − = + − + −∑  (58)

When β = 1, it turns out to be the traditional Taylor series. 
Theorem 4. Modified Fractal Taylor series is expressed:

2
2 20 0 0

0 0 0 02
0

d ( ) d ( ) d ( )1 1( ) ( ) ( ) ( ) ( )+
! 2d d d

N n
n n

n
n

x x x
x x x x x x x x

n x x x

β β β
β β β β β β β β

α α α

φ φ φ
φ φ

=

= − = + − + −∑  (59)

Theorem 5. The two scale transform to convert approximately a fractal space or a 
fractal time into a continuous ones:

X xβ= (60)

T tα= (61)
The explanation of the two scale transform was given in [4, 5]. We just come back to 

the adjacent hierarchical levels of a Carton set, when we watch it using a large-scale (X), it is 
a continuous line, but we measure it using a small scale of x, it becomes discontinuous. So eq. 
(60) is to convert approximately a fractal space on a small scale of x into a continuous one on 
a large-scale. This transform makes the fractal calculus extremely simple in view of traditional 
calculus. Now the fractal calculus has been applied to non-linear vibration [62], biomechanics 
[63-65], electrochemical arsenic sensor [66], tsunami model [67], thermal insulation [68], frac-
tal rate model [69], biomimic design [70, 71], fractal diffusion [72], fractal filtration [73], and 
nanotechnology [74-78].
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A fractal ageing model 

As an example, we give a detailed discuss on a fractal ageing model and its solution 
process. Cellulose hydrolytic degradation is a complex process, it depends upon not only the 
bond breaking, but also the degree of polymerization (DP). Cellulose degradation is usually 
characterized in terms of DP and its evolution is commonly described by the well known Eken-
stam equation or its modification:
–– Ekenstam equation [79-83]

1
0

1 1 k t
DP DP

− = (62)

–– Emsley equation [79-83] 

2 3
0

1 1 exp( )k k t
DP DP

− = (63)

–– Ding-Wang equation [84, 85]

[ ]5 4
0

1 1 exp( )DP k k t
DP

− = − (64)

–– Calvini’s multiple scale law [79-83]

[ ] [ ] [ ]6 6 7 7 8 8
0

1 1 1 exp( ) 1 exp( ) 1 exp( )n k t n k t n k t
DP DP

− = − + − + − (65)

–– Paolo-Calvini law [79-83]
0 4exp( )DP DP k t= − (66)

where DP0 and DP are, respectively, the degree of polymerization before and after the degra-
dation, ki (i = 1~8) are parameters, k1 is the reaction rate, k5 is the capacity of the DP reservoir  
[84, 85], n6, n7, n8 are the initial scissile units in the weak links, amorphous and crystalline re-
gions, respectively [80]. 

Cellulose degradation can be described by the following first-order kinetics: 
2

1 0
d ( ) , (0)
d

DP k DP DP DP
t

= − = (67)

The solution of eq. (67) is exactly the Ekenstam equation. 
The second-order kinetics:

2
0 0

d ( ) ( )( ), (0) , (0)
d

DP k t DP DP DP DP k k
t

= − = = (68)

where the reaction rate (k) is a function of time. The exact solution of eq. (68) for k = k0 [78]:

0
0

1 1ln 1 ln 1 k t
DP DP

   − − − =   
  

(69)

Generally the first-order kinetic equation can be expressed [74]:

0 (1 )ktS n e−= − (70)
where S is the number of broken bonds (i. e., the number of scissions) and n0 the initial number 
of scissile glycosidic linkages [79].

We assume that it requires Δt to break a bond, when t > Δt the first-order kinetic law 
can be approximately modelled by eq. (70), however, when t < Δt the cellulose degradation or 
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the DP is unpredictable, so we need the two scales of time to describe the DP [4, 5], one is the 
large-scale t > Δt, and the other is a smaller scale (Δt), and a fractal model has to be adopted. 

The DP is not differentiable with respect to time, it is differentiable with respect to tα, 
where α is the fractal dimension. So DP depends upon not only Δt, but also tα:

( )DP t α∝ ∆ (71)
DP tα∝ (72)

According to the aforementioned analysis, the first-order kinetics should be modified:
2

1 0
d ( ) , (0)

d
DP k DP DP DP

tα
= − = (73)

where dDP/dtα is the fractal derivative defined

0

0
0

00

( ) ( )d ( ) lim
d ( )t t t

t

DP t DP tDP t
t t t

α α
α

α α− →∆
∆ ≠

−
=

− (74)

The fractal models using the aforementioned fractal derivative has been widely ap-
plied to various complex problems, eqs.(62)-(66) can be modified:
–– modified Ekenstam equation

1
0

1 1 k t
DP DP

α− = (75)
–– modified Emsley equation 

2 3
0

1 1 exp( )k k t
DP DP

α− = (76)

–– modified Ding-Wang equation

5 4
0

1 1 exp( )DP k k t
DP

α − = −  (77)

–– modified Calvini’s multiple scale law 

6 6 7 7 8 8
0

1 1 1 exp( ) 1 exp( ) 1 exp( )n k t n k t n k t
DP DP

α α α     − = − + − + −      (78)

–– modified Paolo Calvini law

0 4exp( )DP DP k tα= − (79)
Equation (79) was experimentally verified by Fan et el. [86].
The fractal second kinetics can be written in the form:

2
0

d ( ) ( )( ), (0)
d

DP k t DP DP DP DP
t

α
α = − = (80)

Taylor series method [87-90] is used to solve eq. (80). When the degradation evolu-
tion tends to infinity, we have the following equilibrium state:

( ) 1DP t →∞ = (81)

Equation (81) reveals that DP changes approximately exponentially from DP0 at  
t = 0 to a final value DP = 1 when time tends to infinity, accordingly we can assume DP can be 
expressed in the following form:

0
1

1 ( 1)exp
N

n
n

n
DP DP a tα

=

 = + − − 
 
∑ (82)
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where an (1~ N) are unknown constants to be further determined. It is obvious that eq. (82) sat-
isfies the initial condition at t = 0 and the terminal condition when t tends to infinity. 

To show the solution process, we consider a simple case:
2

0 1 21 ( 1)exp( )DP DP a t a tα α= + − − − (83)
From eq. (80), we have:

2
0 0 0

d (0) ( )
d
DP k DP DP
tα

= − (84)

Differentiating eq. (80) with respect to tα, we have:

2d d d d d( ) ( ) 2 ( ) ( )
d d d d d

kDP k DP DP DP DP DP
t t t t tα α α α α

   = − + −      
(85)

Setting tα = 0, we obtain:
2 2 2
0 0 0 0 0 0

d d d(0) (1 2 )( ) (0)( )
d d d

DP kk DP DP DP DP DP
t t tα α α= − − + − (86)

On the other hand, from the trial solution, eq. (83), we have:
2

0 1 2 1 2
d ( ) ( 1)( 2 )exp( )

d
DP DP a a t a t a t

t
α α α

α = − − − − − (87)

and
2 2

0 1 2 2 1 2
d d ( ) ( 1) ( 2 ) 2 exp( )

d d
DP DP a a t a a t a t

t t
α α α

α α
   = − − − − − −    

(88)

We, therefore, obtain the following relations:
2

1 0 0 0 0
d (0) ( 1) ( )
d
DP a DP k DP DP
tα

= − − = − (89)

and
2 2 2 2

0 1 2 0 0 0 0 0 0
d d d(0) ( 1)( 2 ) (1 2 )( )+ (0)( )

d d d
DP kDP a a k DP DP DP DP DP

t t tα α α
  = − − = − − − 
 

(90)

Solving a1 and a2 from eqs. (89) and (90) results:
	 a1 = k0DP0	 (91)

2
2 0 0 0

1 d(1 ) ( 0)
2 d

ka k DP t DP
t

α
α

 = − + =  
(92)

We obtain the following approximate solution:

2 2
0 0 0 0 0 0

1 d1 ( 1)exp (1 ) ( 0)
2 d

kDP DP k DP t DP k DP t t
t

α α α
α

  = + − − − − + =    
(93)

Equation (93) reveals that DP changes exponentially with a linear and square tα depen-
dence, hereby tα can be understood as a scission time. 

In previous derivation, we assume that DP = 1 at infinite time, this may be true, how-
ever, for pure hydrolysis of cellulose with sulfuric acid to the monomeric sugars, but normally 
cellulose degradation does not follow this path all the way to the monomer but stops at the 
level-off DP which is different from DP = 1. Equation (82) can be updated:

0
1

( ) exp
N

n
n

n
DP DP DP DP a tα∞ ∞

=

 = + − − 
 
∑ (94)
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where DP∞ is the level-off basic degree of polymerization. 
The kinetic law, eq. (93), can be modified:

2 2
0 0 0 0 0 0

1 d( )exp (1 ) ( 0)
2 d

kDP DP DP DP k DP t DP k DP t t
t

α α α
α∞ ∞

  = + − − − − + =    
(95)

Equation (95) illustrates that DP changes exponentially from the initial value to the 
level-off basic degree of polymerization, at final version. The general kinetics can be expressed:

0

0

d ( )
d

M
n

n
n
N

n
n

n

c DP
DP

t b DP
α

=

=

=
∑

∑
(96)

where bn and cn are constants. This model can describe the different slopes of DP at the initial 
stage and the terminate stage. 

The 1-D unsteady compressible flow in a porous medium 

As another illustrating example, we consider 1-D unsteady compressible flow in a 
porous medium, which is considered as two adjacent fractal levels. 

Using the laws in fractal space, the governing equations for 1-D unsteady compress-
ible flow through a porous tube can be expressed:
–– mass equation

( ) ( ) 0A uA
t xα α

ρ ρ∂ ∂
+ =

∂ ∂
(97)

–– moment equation 

2( ) 1 0
2 1

u Pu
t xα α

γ
γ ρ

 ∂ ∂
+ + = −∂ ∂  

(98)

–– homentropic equation

p cpγ= (99)
where A is the tube area, ρ – the air density, u – the flow velocity, p – the pressure, γ – the ho-
mentropic index, and c – the constants. 

When α = 1, the previous problem was widely studied and its various variational for-
mulations were established [91-95]. 

Before we establish a variational formulation for the previous problem in a fractal 
space, we give the following theorem [96-99]. 

The following variational formulation in a fractal space and a fractal time:

( ) , , d dJ L t x
t x

α α
α α

φ φφ φ ∂ ∂ =  
∂ ∂ ∫∫ (100)

admits the following Euler-Lagrange equation: 

0L L L
t x

t t

α α

α α
φ φφ

   
   ∂ ∂ ∂ ∂ ∂   − − =

∂ ∂∂       ∂ ∂∂ ∂      ∂ ∂      

(101)
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In order to obtain a variational formulation for eqs. (97)~(99), we introduce a poten-
tial function ϕ for eq. (98) in the fractal space:

u
xα
φ∂

=
∂

(102)

21
2 1

Pu
tα
φ γ

γ ρ
 ∂

= − + −∂  
(103)

According to the semi-inverse method [91-95], a trial-variational formulation is de-
fined:

( ) , , d dJ L t x
t x

α α
α α

φ φφ φ ∂ ∂ =  
∂ ∂ ∫∫ (104)

where F is an unknow fractal function of u, p, and ρ. It is obvious that the stationary condition 
with respect to ϕ is eq. (97). Taking variation with respect to u and ρ results:

+ 0FA
uxα

φ δρ
δ

∂
=

∂
(105)

+ 0FA uA
t xα α

φ φ δ
δρ

∂ ∂
+ =

∂ ∂
(106)

where δF/δu is the fractal variational derivative defined. 
The fractal variational derivative is defined: 

t x

F F F F
u u t xα α

α α

δ
δ φ φ

   ∂ ∂ ∂ ∂ ∂   = − − +
   ∂ ∂ ∂∂ ∂   

 (107)

where the subscripts mean fractal derivatives

= , =
t xt xα αα α

φ φφ φ∂ ∂
∂ ∂

(108)

In view of eqs. (102) and (103), we have:

=F A Au
u xα

δ φρ ρ
δ

∂
= − −

∂
(109)

21
2 1

F PA uA A u
t xα α

δ φ φ γ
δρ γ ρ

 ∂ ∂
= − − = − + −∂ ∂  

(110)

From eqs. (109) and (110), F can be calculated:
2

1
1 ln
2 1

F Au AP Fγρ ρ
γ

= − + +
−

(111)

where F1 is an unknown function of p. 
 The variational formulation becomes:

2
1

1( , , , ) ln d d
2 1

J u p A uA Au AP F t x
t x

α α
α α

φ φ γφ ρ ρ ρ ρ ρ
γ

 ∂ ∂
= + − + + 

−∂ ∂ ∫∫ (112)

Its Euler-Lagrange equation for δp reads:
1ln 0

1
FA
p

γ ρ
γ

∂
+ =

− ∂
(113)
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By the homentropic equation, eq. (99), we have:
1/

1 1ln ln (ln ln )
1 1 1

F pA A A p c
P c

γγ γρ
γ γ γ

∂  = − = − = − − ∂ − − − 
(114)

We can identify F1 as follows:

1
1 ( ln ln 1)

1
F A p p p c

γ
= − − −

−
(115)

Now we have the following theorem.
The 1-D unsteady compressible flow in a fractal space admits the following fractal 

variational principle:

2

( , , , )

1 1ln ( ln ln 1) d d
2 1 1

J u p

A uA Au AP A p p p c t x
t x

α α
α α

φ ρ

φ φ γρ ρ ρ ρ
γ γ

=

 ∂ ∂
= + − + − − − 

− −∂ ∂ ∫∫ (116)

Proof. The Euler-Lagrange equations of eq. (116):

( ) ( ) 0A uA
t xα αρ ρ∂ ∂

− − =
∂ ∂

(117)

0A Au
xα
φρ ρ∂
− =

∂
(118)

21 0
2 1

PA uA Au A
t xα α

φ φ γ
γ ρ

∂ ∂
+ − + =

−∂ ∂
(119)

1ln (ln +1 ln 1) 0
1 1

A A p cγ ρ
γ γ

− − − =
− −

(120)

It is obvious that eqs. (117) and (118) are equivalent to, respectively, eqs. (97) and 
(100). Using eqs. (100) and (119) becomes eqs. (100), and (120) can be converted to eq. (99) 
by a simple calculation. 

If we want to establish a fractal variational formulation with a constraint of eq. (99), 
the trial-functional can be written in a similar way as that in eq. (112): 

( , , ) + d dJ u A uA F t x
t x

α α
α α

φ φφ ρ ρ ρ∂ ∂ = + 
∂ ∂ ∫∫ (121)

By a similar manipulation as before, we have: 

+ 0FA
uxα

φ δρ
δ

∂
=

∂
(122)

+ 0FA uA
t xα α

φ φ δ
δρ

∂ ∂
+ =

∂ ∂
(123)

Considering eq. (99) is a constraint, from eqs. (122) and (123) we have:
F A Au
u xα

δ φρ ρ
δ

∂
= − = −

∂
(124)

2 2 11 1=
2 1 2 1

F P cA uA A u A u
t x

γ
α α

δ φ φ γ γ ρ
δρ γ ρ γ

−   ∂ ∂
= − − = − + − +   − −∂ ∂    

(125)
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From eqs. (124) and (125), we have:
21=

2 1
cAF A u γρ ρ
γ

− +
−

(126)

We have finally the following fractal variational principle with three independent 
functions of ϕ, u, and ρ.

A fractal variational formulation with three independent functions of ϕ, u, and ρ:

21( , , ) d d
2 1

cAJ u A uA A u t x
t x

γ α α
α α

φ φφ ρ ρ ρ ρ ρ
γ

 ∂ ∂
= + − + 

−∂ ∂ ∫∫ (127)

Proof. Its Euler-Lagrange equations:

( ) ( ) 0A uA
t xα αρ ρ∂ ∂

− − =
∂ ∂

(128)

0A Au
xα
φρ ρ∂
− =

∂
(129)

2 -11 0
2 1

c AA uA Au
t x

γ
α α

φ φ γ ρ
γ

∂ ∂
+ − + =

−∂ ∂
(130)

It is easy to prove that eqs. (128)-(130) are equivalent to eqs. (97), (102), and (103), 
respectively.  

Conclusion 

God created the solids, the devil created their boundaries, as commented by Wolf-
gnang E. Pauli, the unsmooth boundary can produce unbelievable phenomena, the two-scale 
mathematics is a tool to revealing the hidden truth beyond the conventional continuum mechan-
ics. In this paper some basic properties of fractal derivatives are reviewed, and the two-scale 
dimension is emphasized because physical laws are scale-dependent. Fractal ageing model is 
suggested, and two variational formulations are established, for the first time ever, for 1-D 
unsteady compressible flow through a porous tube, which is considered as two adjacent hierar-
chical levels of a fractal pattern. This paper sheds a promising light on practical applications of 
fractal calculus to various engineering problems. 
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