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A kind of anomalous diffusion and heat transfer on a comb structure with aniso-
tropic relaxation are studied, which can be used to model many problems in bio-
logic and nature in fractal porous media. The Hausdorff derivative is introduced
and new governing equations is formulated in view of fractal dimension. Numeri-
cal solutions are obtained and the Fox H-function analytical solutions is given
for special cases. The particles spatial-temporal evolution and the mean square
displacement vs. time are presented. The effects of backbone and finger relaxa-
tion parameters, and the time fractal parameter are discussed. Results show that
the mean square displacement decreases with the increase of backbone parame-
ter or the decrease of finger relaxation parameter in a short of time, but they
have little effect on mean square displacement in a long period. Particularly, the
mean square displacement has time dependence in the form of t%2 (0 < a <1)
when t > 1, which indicates that the diffusion is an anomalous sub-diffusion and
heat transfer.
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Introduction

The classical comb model has been used to describe many abnormal diffusion and
heat transfer phenomena in fractal porous media [1, 2]. For example, it has been used to de-
scribe the transport of cancer cells [3, 4], the propagation of actin polymerization-reaction [5],
the nerve transport along spiny dendrites [6], and quantum non-linear Schrodinger lattices [7].
lomin [8] and Sandev [9] considered the diffusion and heat transfer of comb structure from a
fractal perspective, which can be used to represent more realistic models for describing
transport properties, such as infiltration of diffusing and heat transfer of particles from one ma-
terial to another [10], and diffusion and heat transfer of active species in porous media [11].

Chen and Liang [12] proposed to apply the Hausdorff fractal derivative to describe
anomalous diffusion and heat transfer behavior. Cai et al. [13] studied the 3-D anomalous dif-
fusion and heat transfer in fractal isotropic/anisotropic porous media by Hausdorff derivative
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model and presented a comprehensive physical interpretation. More recent experimental re-

sults of solute transport and ultraslow diffusion agree well with the method [14, 15]. Different

from most previous studies, in this paper, we

introduce the Hausdorff fractal derivative with

the time parameter o to study the anomalous

x_diffusion phenomenon on the comb structure,
fig. 1

The mass conservation equation is written:
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Figure 1. Schematic of the comb structure

o at®t ot
where J is the diffusion flux vector, P = P(t,x,y) — the mass distribution function at the time
t and the positions (x, y), parameter « < (0,1] is the time fractal dimension.

It is well known that the classical Fick’s model contains paradox with infinite prop-
agation velocity [16, 17]. Cattaneo model [18] overcomes the shortcoming of the Fick’s first
law of diffusion and heat transfer by introducing the relaxation time term. In many cases, the
characteristics of particles diffusion and heat transfer are different due to the different media
of the backbone and branches. Fan et al. [19] studied anomalous diffusion and heat transfer in
circular comb-like structure with anisotropic relaxation in angular as well as in radial direc-
tion. Similarly, we need to use different relaxation parameters to describe the diffusion and
heat transfer of particles in different directions. The modified constitutive equations are:

oJ oP
ot —2=-D,—6 2
xTh P 1 % (y) )
and
oJ
Jﬁa#n%% )
where 7; is the backbone relaxation parameter and z, is the finger relaxation parameter, re-
spectively.
The initial conditions are:
P(0,x,y) =(x)5(y) 4)
3¢ (0,%y)=Jy(0.x,y) =0 ()
and the boundary conditions are:
P(t, %00, y)= P(t, X, +0) =0 (6)
oP
—(t,x,—¢)=0 @)
oy

where ¢ >0 is arbitrarily tiny constant, it is used to accommodate the conditions of delta
function.
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By introducing dimensionless quantities for unification:

D2 D, « D, » D? D2
t> Lt x>2x, yo2y, no—tn, 5,25,
D, D, D, > >

4 4 2
JX—>D—23JX*, Jy—>D—233y*, P—>D—22P*
Dl Dl Dl

We rewrite the governing equations and corresponding initial and boundary condi-
tions in dimensionless forms. For simplicity, the superscript * is omitted:

oP

r — —at® V] (8)
a, o
dern Sx=-T o) ©)
&
‘]y+72#=_%3 (10)
PO, x,y)=0(x)3(y), JIx(0,%xy)=3,(0,xy)=0 (11)
P(t, 4, y) = P(t, X,40) =0, %(t, X,—£) =0 (12)

Obviously, egs. (8)-(10) are generalization of the classical diffusion equation, and
the solutions become hyperbolic which has a wave-like behavior.

Numerical simulation

In this section, the finite volume method is applied which has conservative charac-
teristic. Due to the symmetry of the region, we consider the diffusion on (x,y) €[0,6] %[0, 6] .
This consideration is reflected in the processing of the initial conditions. We set N, +1 and
N, +1nodes on the x-axis and y-axis, respectively, with equal distance. Finally, we let
N, =N, =80 and At=10"".

Discretization scheme of diffusion equation
For the inner nodes, namely 2<i<N, and 2<j< Ny, the discretization scheme

is:
Rk = pK . {(kAt) —[A(:—l)At] b3k L - de )
| kA —[A(; ROLUY Ik, —ank,) (13)

where Je is increased flux transport from controlled volume (i, j) to its eastern (i +1, j) and
Jn is increased flux transport from controlled volume (i, j) to its northern (i, j +1).
For the nodes on boundary y =0, when 2<i< N, ,we have:

{(kAt)* —[(k =D At]* B 2{(kAt)* —[(k —DAt]*}
AX Ay

Rl BY 4 ek, - Jek) s (14)



Wang, Z., et al.: Anomalous Diffusion and Heat Transfer on Comb Structure ...
736 THERMAL SCIENCE: Year 2021, Vol. 25, No. 1B, pp. 733-742

Similarly, for the nodes on boundary x=0, when 2< j< N,, we have:

_ 2{(kat)” —[(k —DAt]"} 3+ {(kAD” —[(k —DA]"}

k+l _ pk
R =R Ax N Ay

(g, —Jdnf;) (15)

For corner points, we have discretization scheme:

+ 2{(kAt)” —[(k —1)At]* 2{(kAt)” —[(k —1)At]*
R T

Since two boundaries have been given, we only need discrete boundaries x =0,y =0
and the corner point (0,0).
Discretization scheme of Je and Jn

According to eq. (10), when 1<i<N,,1<j<N the solution scheme of Je is ob-

y+11
tained:
k k
At Raj— R
el = el —T—iJeik,; e H(y»} an
where
2 Ay
3 ey
H(y) =44y 2 (18)
0, otherwise
And based on eq. (11), when 1<i<N, ;,1< )< Ny, the solution scheme of Jn is:
Pk . —PX
Inf it = dnf —E(Jni“j 4ot b)) "JJ (19)
’ T ' Ay

Discretization scheme of initial conditions
According to eq. (12), when t =0, the initial condition for P is:

Ry ~ 1 herev =24
A 4

And the initial condition for J is, Jef ; = Jn}; =0.

Verification of numerical solution

In this section, we consider the particular case « =1 to verify the numerical solu-
tion. It is noted that when « =1, egs. (8)-(10) become Cattaneo diffusion equation with aniso-
tropic relaxation. We apply the Laplace transform and separation variable method to get the
analytical solution to describe the particle distribution and mean square displacement (MSD).
The particle distribution on the backbone is represented by Fox H-function.

When « =1, by performing the Laplace transform [20] for the time derivative in
egs. (8)-(10), we have:

5= -2

“Dy L ssy) (20)
oX oy
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= = P
J,+spd, =——& 21
X T1Jx ox (Y) ( )
J,+s1,J, = —%P (22)
where P(s,x,y) refers to the Laplace transform of P(t,x,y), so do J_X(s,x, y) and
Jysxy). _
Equations (20)-(22) can be combined:
- 1 %P 1 o°P
sP = —0(y)+————+0(X)0 23
om0 O s, o TO0050) (23)

Assuming that P(s, x, y) = f (s, x)e ! [21], then:

P(s,x,y=0)= f(sX) (24)
When y =0, from eq. (23) we have:
a2
sP = P (25)
1+s7,
The solution to A is obtained:
A=s"2(1+sz,)? (26)
The R is introduced in order to get the particle distribution on the backbone:
+00
RX) = [ P y)dy (27)
and yields:
1 _ol2 1/2
P(s,X)=————[2—e™5 &%) 21§ (s x 28
l( ) 51/2 (1+ 512)1/2 [ ] ( ) ( )
Integrating eq. (23) with respect to the variable y, we have:
1 &
SP,(s,x) = — f(s,X)+5(x 29
1 )1+Srlax2( )+6(x) (29)

From egs. (28) and (29) we obtain the differential equation:

2 12 1/2
;(—2f(S,X)—Sllz(l+Srl)(l+572)_1/2[2—es @rse)™ 21 (5,x) =—(1+57,)5(x)  (30)

with the boundary condition is:
f(s,70)=0 (31)

Letting & — 0, the solution of the equation is:
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f(s,X) = %5*1’4 (Lt 57)Y2(L+ s, )V 4e ™ s Grsm) K (32)
Then, the expression P(s,X,Y) is:
I5(s, X,y) = % g V4 (L+s Tl)uz L+ 572)1/4 e—[s”“(1+ST1)”2 (L+sz,) 4 |x|+sY2 (L+57,)"|y]] (33)

Fory = 0, the particle distribution on the backbone is obtained, we apply the Fox H-
function [22] to describe the particle distribution on the backbone:

P(t,x,0)=L" E s V4 (Lt s7,)Y2(L+ s7,)Y4e s rsa)” (1*5’2)”"*} _

LA =)
-t Z(2rl1)| | | Zmllmlz(;( .) (TZS)I FEEZZmeSS;(nH%S 44 1 -

n=0
2 4
T I A S U PR S o ey _
=t nZ:(:) 2n! |X|nn§)mrlms ‘R _T s|(01)(1—” 22m+§,0),(1—”;1,0] -
(1 | T
_Z 2n’ | | Z _tﬁﬁn +3H§’§ Tt_z(0,1),(1—“_2m+:,oj{1—'§,oj (39

where H'"' is the Fox H-function. In course of leading to eq. (34), the following expression
of the Fox H-function is used:

n p
HLp [ |(1 A (12, A,) }_i(_z) Hj:lr(aj +Ajn) (35)
p.g+l| “l(0,1),(1-b,,B,), - 1 b,.B,)
ne o n[]°,r(b;+8;n)

By integrating with respect to x of the distribution function P(t,x,0) on the interval
(—o0,+00) , we get the total number of particles on the x axis:

+00
(P)= j P(t, x,0)dx = 22[ { j sV +57) Y2 (L4 57,)V e (Lrsn) (rsm) Tixgy

—00

= LY s™V2(1+s7,)"?] (36)
Then the expression for the MSD is obtained:
2 1 _
()= (x P>:2|_ s @+s57) " (1+57y)] @7
(P) L s ™2 1+ 57,)?]

Finally, we can apply numerical Laplace inversion [23] to calculate MSD on the x
axis.
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We have obtained analytical and numerical solutions separately when« =1. The re-
sults are shown as follows, figs. 2 and 3, the curves of the analytical and numerical solutions
are in good agreement.

0.18 8
P (x) : : MSD
5 —Analytical solution 7t |—Analytical solution
0.14 * Numerical solution sl | = Numerical solution
0.12 s
0.1
4
0.08
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0.02 1
0 0 ‘ . ‘ s . : :
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
X X
Figure 2. Comparison between numerical solution Figure 3. Comparison between numerical
and analytical solution on the x-axis when 7. = 0.8, MSD and analytical MSD when 71 = 0.8
=103 andt=1 and » =103

Results and discussion

In this section, we discuss the dynamic characteristics of the spatial and temporal
evolution of particle distribution and the MSD vs. time with the effects of involved parame-
ters.

Figures 4 and 5 show the spatial evolution of particle distribution on the x axis with
the effects of different = The influences of n on the particle distribution are shown in fig. 4.
For o > n, the distribution presents a wave form, and the larger the 71, the stronger the wave
characteristic and more uneven the particle distribution. For o < n, the distribution does not
show the characteristics of the wave. The smaller = is, the higher the peak. The influences of
7, on the particle distribution are shown in fig. 5. The distribution changes from wave form to
diffusion one gradually and the particles transport faster with the increase of parameter z.

0.12 : : . : : 0.12
P (x) P (x)
0.1}
0.08 ol 0.08}
006} <] ] 0.06}
0.04 N ] 0.04}
0.02 . 1 0.02}
0
Figure 4. The spatial evolution of particle Figure 5. The spatial evolution of particle
distribution on the x-axis with different 71 distribution on the x-axis with different
when n=06andt=1 when n=06andt=1

Figures 6 and 7 indicate that the fractal dimension « has significant influence on
particle distribution. When z > n, the wave characteristics of the particle distribution gets
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stronger as « increases. The smaller « is, the particle distribution more uniform is, and when
n < n, the distribution presents a diffusion form and the position of the peak declines with
the decrease of a.
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Figure 6. The spatial evolution of particle Figure 7. The spatial evolution of particle
distribution on the x-axis with different a distribution on the x-axis with different
whennn=1, »=102% andt=1 when 71 =103, »=0.1,andt=1

Figure 8 shows the effects of different 7 and »» on MSD. In a long period, zz and »
have little effect on MSD. However, in a relatively short period of time, MSD decreases with
the increase of 71 or the decrease of . That is to say, the relaxation parameter will affect the
MSD in a short period, and the particle behavior becomes stable with time.

12 . . , . ‘ . - 9
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7 —a—a =0.8
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5 5
——1,=1,7,=103 4
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Figure 8. The temporal evolution of MSD Figure 9. The temporal evolution of MSD on
on the x-axis with different z1 and = when a=1 the x-axis with different e when 71 = 0.8, 2 = 0.01

Work obtained by other researchers shows that when ¢ =1 and t — c , MSD obeys
the form of t¥2 [24]. Since the fundamental solution of the Hausdorff derivative diffusion
model is a stretched Gaussian distribution [14], the form of MSD in our model should be t#2,
Figure 9 confirms our inference which MSD~t%? when t > z. What is more, because the time
fractal dimension « <1, the phenomena of diffusion discussed above belongs to sub-diffusion
or heat transfer.

Conclusions

In this article, a Hausdorff fractal derivative is introduced to study the anomalous
diffusion and heat transfer on a comb structure with anisotropic relaxation. The numerical so-
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lution is obtained and the analytical solution is also given by Fox H-function in particular
case, which verified the numerical solution.

Results show that the diffusion and heat transfer of particles is related to relaxation
parameter and time fractal dimension. For = > m, the distribution and heat transfer presents a
wave form, and the larger 71, the stronger the wave characteristic. Forn < z, the distribution
does not show the characteristics of the wave. In a relatively short period of time, MSD de-
creases with the increase of n or the decrease of ». However, = and = have little effect on
MSD in a long period. For time fractal dimension ¢, with the increase of the value of ¢, the
particles are difficult to diffuse and heat transfer to a uniform concentration. The result of
MSD shows that the diffusion and heat transfer form of the particle is sub-diffusion and heat
transfer. Particularly, the MSD obeys the form of t¥2 whent > 7.
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