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The present attempt is made to propose a new class of numerical techniques for 
finding numerical solutions of ODE. The proposed numerical techniques are based 
on interpolation of a polynomial. Currently constructed numerical techniques use 
the additional information(s) of derivative(s) on particular grid point(s). The ad-
vantage of the presently proposed numerical techniques is that these techniques 
are implemented in one step and can provide highly accurate solution and can be 
constructed on fewer amounts of grid points but has the disadvantage of finding 
derivative(s). It is to be noted that the high order techniques can be constructed us-
ing just two grid points. Presently proposed fourth order technique is A-stable but 
not L-stable. The order and maximum absolute error are found for a fourth order 
technique. The fourth order technique is employed to solve the Darcy-Forchheimer 
fluid-flow problem which is transformed further to a third-order non-linear bound-
ary value problem on the semi-infinite domain.
Key words: interpolation, Darch-Forchheimer flow, A-stable, derivative(s), 

maximum absolute error

Introduction

Numerical methods can be considered to apply when some physical phenomena are 
expressed in mathematical form. Also, some analytical methods have been considered to solve 
the differential equations that arise from physical phenomena(s). The main benefit of using nu-
merical methods is their speed of solving the problem when compared with analytical methods. 
Since the analytical methods use algebra in the computations, so due to this fact, the analytical 
methods may take more time to solve the problem(s). Some numerical methods are those kinds 
of methods that provide high order numerical solution, and some can be used to reduce oscil-
lations in the solution. Also, one class of numerical methods is Runge-Kutta methods which 
may provide high order solution but these methods are applied in different steps. Some of the 
presently constructed numerical methods can provide high order solution and can be construct-
ed on just two grid points. 

Jones [1] applied finite difference method for solving Navier stokes equations and 
sea breeze model, and applied finite difference method that was developed in their/his previous 
work for the improvement of accuracy and computational efficiency. In [2], the comparison of 
homotopy perturbation method and the finite difference method is given and proved that the 
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homotopy perturbation method is more accurate, effective and more stable. The work for a 
fourth order in space and second-order in time-based on spline in tension nine-point compact 
differencing technique was proposed in [3]. For solving coupled viscous Burger equations, an 
exact differencing technique was developed in [4] and explicit non-standard finite difference 
technique was extended on the basis of exact finite difference technique. In [5], new non-stan-
dard finite difference technique is implemented for solving fractional Navier stokes equations 
with stability and convergence. The convergence of generalized finite difference method for 
PDE can be seen in [6]. The work of the differencing technique for some problem can be 
seen in [7-11]. The third-grade fluid and flow in porous media are studies by employing Darcy 
Forchheimer based model in [12]. The study of Chebyshev finite difference for MHD flow of a 
micropolar fluid past a stretching sheet with heat transfer is given in [13]. Some more work on 
fluid can be seen in [14-18].

Presently constructed numerical methods are derivative-based if derivative(s) exist. 
Presently proposed methods may provide high accuracy for ODE either linear or non-linear. 
One of these numerical methods is A-stable but not L-stable. These proposed methods are based 
on interpolation of the polynomial(s) using two or more grid points. If one needs to construct 
a sixth-order numerical method using two grid points, then the first four derivatives will be 
calculated if derivatives exist and the interpolation of polynomial contains six unknowns will 
be used. Unknowns can be found using the value(s) of function and its derivative(s) on two grid 
points, so the resulting methods become sixth-order accurate. 

Numerical techniques

Consider differential equation:

( ) ( )'u x f u= (1)

For the sake of solving the first-order differential eq. (1), consider the cubic polyno-
mial shifted xi units. This polynomial function is an approximation for the solution of eq. (1):

( ) ( ) ( ) ( )3 2
i i ip x a x x b x x c x x d= − + − + − + (2)

and let the graph of the polynomial passing through the points 

	 ( ) ( )1 1,  and ,i i i ix f x f− −

and also assume that the graph for the first-derivative of p(x) passes through aforementioned 
two points. 

Since the graph and derivative of p both pass through the points so, the eq. (1) should 
be satisfied by these points, and partially simplifying yields:

3 2
1andi if d f ah bh ch d−= = − + − + (3)

2
1and 3 2i if c f ah bh c−′ ′= = − + (4)

The unknowns can be founded by solving eqs. (3) and (4), and these unknowns are given:

( ) ( )1 1 1 1
3 2

2 2 3 3 2
,     ,

,    

i i i i i i i i

i i

f f h f f f f h f f
a b

h h
c f d f

− − − −′ ′ ′ ′− − − + − − +
= − = −

′= =
(5)
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By applying the fundamental theorem of calculus, the following equation is given:

( ) ( ) ( ) ( )

( ){ }
1 1

3 2
1 1

1 1
1

d d

6 6

12

i i

i i

x x

i i i i i i
x x

i i i i
i

u u p x x u a x x b x x c x x d x

h f f h f f
u

− −

− −

− −
−

 = + = + − + − + − + =  

′ ′+ + −
= +

∫ ∫
(6)

The fourth order difference technique using two points is given:

( ){ }1 1 16 6
12i i i i i i
hu u f f h f f− − −′ ′= + + + − (7)

Similarly, more higher-order techniques can be developed by considering more 
high-order derivatives on two grid points or more than two grid points can be considered. 

A sixth-order technique on three grid points is given:

( )1 1 1 2 2101 128 40 11 3 13
240i i i i i i i i
hu u f f hf f hf hf− − − − −′ ′ ′= + + + + + − (8)

Problem formulation

Consider the laminar, steady, Newtonian, incompressible flow over the stretching 
sheet. The x-axis is considered along the flow and y-axis is perpendicular to the x-axis. Under 
these assumptions, the Governing equations of Darcy-Focheimer flow are given:

0u v
x y
∂ ∂

+ =
∂ ∂

(9)

2
2

2
u u uu v u Fu
x y y k

νν∂ ∂ ∂
+ = − −

∂ ∂ ∂
(10)

Subject to the following boundary conditions:
, 0 when 0u V v y= = = (11)

0 whenu y= →∞ (12)
where V is the velocity of the stretching sheet. 

Consider the similarity transformations eq. (12):

( ) ( ) ( )
1/2

1/2, , au axf v av f yη η η
ν
 ′= = − =  
 

(13)

Under the similarity transformations eq. (13), the continuity equation is satisfied, and 
the momentum equation is reduced:

( ) 21 rf f F f ffλ′′′ ′ ′′= + + ′ − (14)

subject to:
( ) ( )0, 1   when  0f fη η η= ′ = = (15)

( )  0 whenf η η′ = → ∞ (16)
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The physical quantity skin friction coefficient is given:

	 ( )0.5Re 0x fxC f ′′= −

where Rex = cx2/n is the local Reynolds number.
In order to solve the eq. (14) with boundary conditions (15) and (16), first reduce the 

third-order eq. (14) into the system of first-order equations:

1f f′ = (17)

1 2f f′ = (18)

( ) 2
2 1 1 21 rf f F f ffλ′ = + + − (19)

By implementing the fourth order technique eq. (7) using the Gauss-Seidel iterative 
method gives: 

( ) ( ) ( ) ( ){ }1 11 1
1 1 1 2 21 16 6

12
k k k kk k

i i i i i i
hf f f f h f f+ ++ +

− − −
 = + + + −   (20)

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1
1 1 2 2 2 21 1 16 6

12
k k k k k k
i i i i i i

hf f f f h f f+ + + +
− − −

 ′ ′= + + + −   (21)

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
2 2 2 2 2 21 1 16 6

12
k k k k k k
i i i i i i

hf f f f h f f+ + + +
− − −

  ′ ′ ′′ ′′= + + + −    
(22)

where 

	 ( )2 2 2 1 2 1 22 1 rf f ff f f F f fλ′′ ′= − − + +

Stability

In order to find stability for the present technique of finite difference, consider the 
linear equation:

y ky′ = (23)

2y ky k y′′ ′= = (24)

The presently proposed fourth order finite difference recurring relation for eq. (23) is 
given:

( )1 1 16 6
12n n n n n n
hy y y y h y y− − −′ ′ ′′ ′′ = + + + −  (25)

This implies:

( )

( ) ( ) ( )
( )

2
1 1 1

2 2 2 2

1 1 1

2 2
12 2 2 2

1 2 2

6 6
12

2 12 2 12
12 6

12 6 12 6
12 6

,

n n n n n n

n n n n n n

n
n n n

n

hy y y ky hk y y

hk h k hk h ky y y y y y

hk h k y
hk h k y hk h k y y

hk h k y

− − −

− − −

−
−

 ′= + + + − 

− + = + +

+ +
− + = + + =

− +

(26)
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The stability function:

( )
2

2
12 6
12 6

z zz
z z

φ + +
=

− +
(27)

and the absolute stability region:
2

2
12 6 1
12 6

z zz
z z

 + + ∈ < 
− +  

 (28)

Lemma. For y′ = ky, the technique eq. (7) is fourth order accurate.
Proof. Consider the Taylor series expansion for the L.H.S. of (7) is given:

	

( )

( )

2 3 4
5

1 1 1 1 1

2 3

1 1 1 1 1 1 1 1

2 3
3

1 1 1 1 1

2 6 24

R.H.S. 6 6 6
12 12 2 6

6
2 6

iv
i i i i i i

iv
i i i i i i i i i i

v
i i i i i i

h h hy y hy y y y O h

h h h hy y y h y y y y hy y y

h hy h y y hy y h y

− − − − −

− − − − − − − −

− − − − −

′ ′′ ′′′= + + + + + +

  ′ ′ ′′ ′′ ′ ′′ ′′′ + + + − = + + + + +      

′ ′′ ′′ ′′′ ′+ + − + + + 1 1
v

iy− −

   ′′ =         

R.H.S becomes

	

( )
2 3

2 3 3
1 1 1 1 1 1 1 1

2 3 4

1 1 1 1 1

12 6 3
12 2 6

2
which is L.H.S.

6 24

iv v v
i i i i i i i i

iv
i i ii i i

h h hy y hy h y h y h hy y h y

h h hy hy y y y y

− − − − − − − −

− − − − −

  
′ ′′ ′′′ ′′′ ′= + + + + − + + =      

′ ′′ ′′′= + =+ + +

Theorem. The maximum error attained by the fourth order technique eq. (7) using the 
Gauss-Seidel iterative method is bounded subject to the assumption of differentiability:

	 ( )1 2, ,f f f=H H

and assumption for the satisfaction of the following inequality 

	

3

1

3 0ˆ
2 j

j

hh H
=

− − >∑
Proof. Discretize eqs. (20)-(22) using the fourth order technique eq. (7) with a 

Gauss-Seidel iterative method gives:

( ) ( ) ( ) ( )
1 1

1 11
1 1 2 21 1

1 6 6 0 
12

k k
k k k ki i
i i i i

f f
f f h f f

h

+ +
+ +−
− −

−    + + + − =      
(29)

( ) ( )
( ) ( ) ( ) ( )

1 1
11 1 1 ' '1

2 2 2 21 1

1 6 6 0
12

k k
k kk ki i

i i i i

f f
f f h f f

h

+ +
++−

− −

−   + + + − =    
(30)

( ) ( )
( ) ( ) ( ) ( ){ }

1 1
2 2 1 11

2 2 2 21 1
1 6 6 0

12

k k
k k k ki i
i i i i

f f
f f h f f

h

+ +
+ +−
− −

−  ′ ′ ′′ ′′+ + + − =  
(31)

and let the exact techniques are given:
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( ) ( ) ( ) ( )1
1 1 2 21 1

1 6 6 0
12

E E
E E E Ei i
i i i i

f f
f f h f f

h
−

− −

−    + + + − =      
(32)

( ) ( )
( ) ( ) ( ) ( ){ }1 1 1

2 2 2 21 1
1 6 6 0

12

E E
E E E Ei i
i i i i

f f
f f h f f

h
−

− −

−  ′ ′+ + + − =  
(33)

( ) ( )
( ) ( ) ( ) ( )2 2 1

2 2 2 21 1
1 6 6 0

12

E E
E E E Ei i
i i i i

f f
f f h f f

h
−

− −

−   ′ ′ ′′ ′′+ + + − =    
(34)

Let the error between exact and approximate solutions of any point on the grid is 
given:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 3 2 2, , kk k k E k Ek E
i ii i i i i iie f f e f f e f f= − = − = −

By applying the mean value theorem on the function H gives:

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 3, ,  , , , ,k k E E kk E
i ii i i i if f f f f f c c c   − = ∇      

H H e H (35)

where

	 ( ) ( ) ( ) ( ) ( )1 1 3 2 1 2 3 3 2 3 3, , k k kk kk
i i ii i ic f e c f e c f eε ε ε= + = + = +

and

	
[ ] ( ) ( ) ( ) ( )1 2 3 4 1 1 2 3, , , 0,1 , and , , kk k k

i i i ie e eε ε ε ε  ∈ =   
e

The convergence error equations using Gauss-Seidel iterative method can be described:

( ) ( ) ( ) ( ) ( ) ( ){ }11 1 1
1 1 2 2 3 31 1 16 6

12
k kk k k k

i i i i i i
he e e e h e e++ + +

− − −
 − = + + −  

(36)

( ) ( ) ( ) ( ) ( ) ( )
3

11 1 1 1 1
2 2 3 3 1 11 1

2

6 6
12

kk kk k k
j ji i ii i i

j

he e e e h e H h e H++ + +
− −

=

 
 − = + + +
  

∑ (37)

( ) ( ) ( ) ( ) ( ) ( )
2 111 1 2 2

2 2 3 3 3 31 1
1

6 6
12

kk k kk k
j ji i i i ii

j

he e e e h e H h e H
+++ +

− −
=

 
 − = + + +
  

∑ (38)

Followings inequalities can be derived using eqs. (36)-(38):

( ) ( ) ( ) ( )( ) ( )1 1 1 4
1 1 2 2 11 12

k k k k
i i i i

he e e e M h+ + +
− −

≤ + + +  (39)

( ) ( ) ( ) ( )( ) ( )11 1 2
2 2 3 3 11 12

k kk k
i i i i

he e e e M h++ +
− −

≤ + + +  (40)

( ) ( ) ( ) ( ) ( )
3 3 11 1 2

3 3 11 1
1 1

ˆ ˆ
2

k kk k
j j j ji i i i

j j

he e e H e H M h
++ +

− −
= =

 
 ≤ + + +
 
 
∑ ∑  (41)

let

	

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
,

1 1 2 21, , 1, , 13 , ,

1 2 31, , 1, ,

3

1 ,

max , max , max

max max , max , max

k kk k k k
i i ii N i N i N

kk kk
i i ii N i N i N

e e e e e e

e e e e

= … = … = …

= … = … = …

= = =

 =   
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and 

	

1 2 31 1 1
1 1 1

1 2

ˆ ˆ ˆ, , , ,H H H
f f f

 ∂ ∂ ∂  ∇ = =   ∂ ∂ ∂ 

H H HH

where N is the symbol used for the total number of nodes.
By adding the inequalities (39)-(41) gives:

( ) ( )
3 3

1 1 1 1

1 1

3 ˆ
2 2 2

ˆ
2

k k k k k k k
j j

j j

h h h he e e e e e H e H+ + + +

= =

≤ + + + + +∑ ∑ (42)

This implies:

	

3 3
1 1 1 1

1 1

3 3
1

1 1

3
2 2 2 2 2 2

3
2 2

ˆ ˆ

ˆ ˆ

k k k k k k k
j j

j j

k k
j j

j j

h h h h h he e e e H e e e H

h hh H e h H e

+ + + +

= =

+

= =

− − − ≤ + +

   
   − − ≤ +
   
   

∑ ∑

∑ ∑
	

According to the assumption given in the hypothesis, the last inequality implies:

1k ke eβ
α

+ ≤ (43)

with the assumption

	

3

1

0ˆ3
2 j

j

hh Hα
=

 
 = − − >
 
 

∑
	

Then, the inequality (43) becomes for k = 0:

	 ( )1 0 2ˆe e M hα≤ + Θ

For k = 1:

	 ( ) ( ) ( )2 1 2 2 0 21ˆ ˆe e M h e M hα α α≤ + Θ ≤ + + Θ

If this is continued in the same manner, the following inequality can be formed:

	 ( ) ( )0 1 21 ˆk k ke e M hα α α−≤ + +…+ + Θ

this implies

	
( )0 2ˆ1

1

k
k ke e M hαα

α
−

≤ + Θ
−

This ends the proof.
The condition of convergence is given:

	

3

1

3 1ˆ
2 j

j

hh H
=

− − <∑

Because the geometric series converges for |α| < 1.
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Comparison

Comparison of the present method with the mixed finite difference is made for the 
computation of numerical values of physical quantity skin friction coefficient is given in tab. 1.

Table 1. Comparison of three different numerical methods with  
N (No. of grid points) = 30, length of domain = 7 for the values of skin friction coefficient

λ Fr
	 –f ″(0)

Second-order mixed 
finite difference method Present 4th order method MATLAB solver bvp4c

0.1 0.4 1.1307 1.1646 1.1646
0.3 1.2080 1.2482 1.2482
0.5 1.2798 1.3263 1.3263
0.4 0.1 1.1795 1.2102 1.2102

0.5 1.2652 1.3128 1.3128
0.7 1.3050 1.3615 1.3615

By looking at tab. 1, the high accuracy of the computed results can be seen. Keller-
Box method and standard central second-order methods are used to discretized the reduced 
ordinary differential eq. (14). Since the eq. (14) is a third-order ODE which is converted into a 
system of first and second-order differential equations given:

1f f′ = (44)

( ) 2
1 1 1 11 rf f F f ffλ′′ ′′= + + − (45)

Discretize the eq. (44) using Keller-Box method and eq. (45) using standard sec-
ond-order finite difference methods given:

( )1
1, 1, 1

1
2

i i
i i

f f
f f

h
−

−
−

= + (46)

( )1, 1 1, 1, 1 1, 1 1, 12
1, 1,2

2
1

2
i i i i i

i r i i
f f f f f

f F f f
hh

λ− + + −− + − 
= + + −  

 
(47)

By using the Gauss-Seidel method for eqs. (46) and (47), the resulting equations are given:

	

( )

( )( )

1 1
11

1, 1, 1

1 1 121, 1 1, 1, 1 1, 1 1, 11
1, 1,2

1
2

2
1

2

k k
k ki i
i i

k k k k k
i i i i ik k k

i r i i

f f
f f

h
f f f f f

f F f f
hh

λ

+ +
+−
−

+ + +
− + + −+

−
= +

 − + −
 = + + −
 
  	

In order to find the numerical values of the skin friction coefficient, second-order for-
ward difference formula is implemented on the first derivative f1.

Results and discussions

The present contribution is made to develop a class of numerical techniques for solv-
ing ODE. The mentioned class of numerical techniques deals with interpolation of the different 
curve on some grid points with the use of derivative on one or more grid points. Any high order 
technique can be constructed using the idea of the present contribution. One of the constructed 
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techniques in this work has consisted of interpolation of a curve of a function and its derivative 
using two grid points. Since Adams Moulton proposed the numerical methods with the inter-
polation of the curves on different grid points but the present method uses the information of 
two grid points along with derivative(s) on same grid point(s). If the function and its derivatives 
are evaluated on two grid points, then the resulting technique becomes fourth order accurate. 
If the second derivative is possible, then use the second derivative on two grid points and the 
technique becomes sixth-order. So, one can find high order techniques by using higher-order 
derivatives. So if the task is to find sixth-order accurate numerical method on two grid points 
from the present class of numeral method, then one can use the function and its first four deriv-
atives if they exist on two grid points. 

The other way to get the high-order technique is to use three or more grid points and 
for finding the unknowns in the interpolated curve, some information of the function with the 
use of its derivatives can be used. So, if one uses the three grid points and the interpolated curve 
uses six points, then the function and its first derivate evaluated on three grid points give the 
technique which will be sixth-order accurate. The order of the presently proposed techniques 
can be checked by using the Taylor series expansions for any linear problem and the present 
scheme are consistent because these are more than first-order accurate, so the consistency cri-
teria is fulfilled. The error made by any present technique can be checked by finding the dif-
ference between applied technique and MATLAB built-in solver bvp4c or exact solution if it 
is available. Figures 1 and 2 show the velocity profile and residual when the parameters vary. 
Figure 1(a) shows that the velocity decreases with the enhancement of the parameter Fr. The 
increment can be seen in another figure (zoomed part) for a more closer look. 
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Figure 1. Velocity profile and residual

Figure 2(a) shows the decrease in velocity with the increment of the porous parameter 
λ, and it can be seen that the thickness of the momentum boundary-layer also decreases in both 
of the cases. 

The residual is found by finding one extra derivative of a third eq. (19), and in the 
present contribution second order forward, central and backward formulas are implemented 
to find one extra derivative, and this residual is given in [16]. Since the considered problem is 
third-order but the obtained results do not contain the third-order formula, so extra derivative 
numerically found and when the third-order derivative is found, then numerical residual can be 
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found by plugging in the required information into the considered differential equation. Figure 3 
shows the comparison of MATLAB solver bvp4c with fourth order proposed technique derived 
earlier in the present work. 

Conclusion 

An idea of a new class of numerical methods is given with fourth order technique is 
constructed using interpolation of a polynomial and sixth-order technique is given. Based on 
the idea of two techniques, higher-order techniques can be developed. The order of a technique 
is proved by using Taylor expansion and it can be noted that the present constructed fourth order 
technique is A-stability and a theorem for finding maximum error bound is given and this can 
be considered as the main ingredient for convergence of the scheme. In addition, comparison of 
the technique is made with MATLAB built-in solver bvp4c. Present numerical techniques can 
be used further to solve different linear and non-linear problems in applied sciences. 

Figure 2. Velocity profile and residual with different λ 

Figure 3. Verification of present technique’s with the MATLAB solver bvp4c
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