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In the current study, investigation for the time-dependent flow of third grade fluid 
between two disks is presented by exploiting the competency of numerical solvers 
based on Adams and implicit backward difference methods. The applicable math-
ematical equations are derived and simplified using boundary-layer approach. 
Transformations are invoked for conversion of PDE to ODE. Numerical treatment 
is done with Adams and backward difference scheme. The graphical and numerical 
illustrations are incorporated to present the effect of physical quantities in fluidic 
system involving squeezing disks. The level of accuracy is achieved with the help 
of absolute error graph between Adams and Backward difference scheme for each 
variants of the system model. Validation of the performance on the basis of conver-
gence analysis also presented.
Key words: fluid dynamics, squeezing flow, third grade fluid, Adams method, 
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Introduction

Non-Newtonian fluids play a key role in several medical as well as engineering 
fields, specific examples regarding applications of non-Newtonian fluids include bacteriology, 
bubble columns, polymer solution, food industries, chemical/petroleum, mineral processing 
industries, etc. Several materials i.e. shampoo, mud, blood, ketchup, milk, certain oils, poly-
mers etc., are non-Newtonian. Hence, the interest in these fluids has specially grown consid-
erably. Such fluids have diverse characteristics in terms of rheological features. Therefore, the 
shear-stress-strain relationships in non-Newtonian fluids differ greatly from the Newtonian 
fluid. Researchers mainly used the second grade [1-11]. Flows between disks have been a sub-
ject of much interest, as this configuration can be used in rheometer, manufacture of compos-
ites and polymers, injection shaping and several others. Researchers [12-21] have presented 
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several studies regarding such flows and discussed their applications in detail. The goal of this 
communication is to address the time-dependent flow of third grade fluid between disks. The 
novel aspects of shear thinning/thickening of various materials in nature cannot be described 
by second grade fluids. Hence one requires another fluid model exhibiting such model fea-
tures. The extra rheological parameters in the third-grade fluid yields more complicated and 
non-linear equation than the second-grade fluid. The real motivation in this study is twofold. 
Firstly, to explore the shear thinning/shear thickening effects. Secondly to develop the conver-
gent numerical solution to more non-linear problem. Analysis regarding important parameters 
in the solution is made. 

Salient features of the proposed scheme are highlighted briefly as:
	– The time-dependent flow of third grade fluid is presented with rich dynamical analysis of 

the model by mean of shear thinning/shear thickening property which cannot perceive in 
second grad fluids 

	– Transformation procedure reduces the stiff non-linear partial differential system of the orig-
inal model to relatively simple higher non-linear order ordinary differential system. 

	– The graphical and numerical illustrations established the worth of numerical solvers to 
study the influence of sundry physical quantities in the fluidic system involving squeezing 
disks. 

	– The level of accuracy achieved by the proposed numerical procedure is demonstrated with 
the help of absolute error graph between Adams and backward difference (BDF) for each 
variants of the system model. 

	– Validation of the performance on the basis of convergence analysis is also performed. 

Analysis

Let us consider the rheology of third grade fluid having separation between the walls 
as 1/2 (1 )−H at , with upper disk at 1/2( ) (1 )= = −z h t H at  is moving with velocity 1/2/2(1 )− −aH at  
while, the lower is fixed. The equations presenting the fluid rheology are:
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Equations (2) and (3) represents the components of law of conservation of momentum. 
In this analysis we have considered the third grade non Newtonian fluid model which is more 
general model as compared to Newtonian model. For 1 2 3α α β= =  the current equation is re-
duced to the component of law of conservation of momentum for Newtonian model.

The associated boundary conditions are:

	
0

0, , at ( ) 

0, , at 0

∂
= = =

∂
= = − =

hu w z h t
t

u w w z
	 (4)

Utilizing:

	 ( ), ( ),  
2(1 ) 1 1

η η η′= = − =
− − −
ar aH zu f w f

at at H at
	 (5)

By simplification we reach:

	 ( )(iv) (v) (iv) (iv) (v)1 3 2 5 4 2 2
2
εη  ′′′ ′′ ′′′ ′′ ′′′ ′− + − + + − − − − qf S f f ff f f f f f f f f 	

	
2 (iv) 2

4(iv)2
3

2 (iv) 3

3 ( ) 3 ( )
22 4 0

2
6( ) 48 14( )

εε ε
′′′ ′′ ′′′+ +

 ′ ′′ ′′′−
  
  

′
+ + = 

′ ′ ′′ ′′ ′′+ +

  
 
 +

f f f f
f f f f

f f f f f f
	 (6)

	
, 0, at 0 

0.5, 0, at 1
η
η

′→ → =
′→ → =

f S f
f f

	 (7)

In which the dimensionless quantities are 

	
22 2

31 2
1 2 3 42 2, , , ,

2 (1 ) (1 ) (1 ) (1 )
βα αε ε ε ε

ν µ µ µ
= = = = =

− − − −q
aa aaH rS

at at at H at
	 (8)

Note that if we put 3 0ε =  and 2 1ε ε= −  in eq (6) then eq. (6) reduces to second grade 
fluid [21]. Moreover skin friction is:
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Dimensionless form of eq. (9) is:
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we solved the non-linear system. 

Numerical solutions: Adams and backward difference method

The competency of Adams numerical solver along with BDF method [22-26] is also 
utilized to solve the system given in eq. (6) and boundary conditions as given:
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In Adam predictor-corrector method, we first predict the solution and in next stage 
accurate solution is achieved through corrector. Consider the eq. (6) for velocity profile as:
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Two Step Adam Predictor relation for velocity profile will be:
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While two step Adam corrector formula for velocity profile will be:
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To solve the ODE eq. (6) along with boundary conditions given in eq. (7), the Adam 
numerical solver and implicit BDF methods are applied by invoking the NDSolve built-in rou-
tine of BDF Mathematica software package with default settings. The dynamics of the problem 
is analysis by comparing the results of both methods.

Numerical experimentation with discussion

The aim of current portion is to describe the behavior of physical quantities on ve-
locity profile of the fluid. Figure 1(a) portrays the effects of on the flow profiles. It is noted that 
the velocity field ′f  increases for η  between 0 and 0.7 while decreases for η  between 0.7 and 
1 with the increment in 1ε . Opposite behavior of the flow has observed near to the lower plate. 
Figure 1(b) shows the error analysis for different values of 1ε  which shows that error is negli-
gible in the computed results. The effects of 2ε  on the flow profile and error analysis are pre-
sented in figs. 2(a) and 2(b). It is observed that flow field decreases with an increase in 2ε . 
Moreover, the error for different values of 2ε  is quite negligible. The effects of 4ε  on the flow 
field are portrayed in fig. 3(a). It is quite evident that the velocity field and momentum bound-
ary-layer are decreasing functions of 4ε . Figure 3(b) shows that error in results for different 
values of 4ε  are negligible. Figures 4(a) and 4(b) portray the effects of S on the flow field and 
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the error computation for different values of S. It is evident that due to increment in S will tend 
to increase velocity profile since suction is a boosting agent which enhance the flow. Moreover, 
it is also noted that error for different values of S is negligible fig. 4(b). Figure 5(a) portrays the 
effects of squeezing phenomenon on the flow profile. It is noticed that velocity increases with 
an increment in the squeezing process. Moreover, it is further noted the error for different 
values of squeezing process is negligible fig. 5(b). The numerical magnitude of skin friction 
coefficient for different physical quantities are listed in tab. 1. The results presented in tab. 1 
show that values of the skin friction coefficient increases with an increment in S while de-
creases by increments in both of qS  and 3ε . Computational complexity and convergence anal-
ysis for squeezing parameter is presented in tab. 2. It is observed that all five numerical tech-
niques are suitable for both non stiff as well as stiff and accuracy goal is achieved for squeezing 
parameter variation of third grade fluidic model which proves the convergence and stability of 
numerical methods.
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Table 1. Skin friction coefficients 2 2( / ) er frH r R C  for different values 
of emerging parameters ε1 = ε2 = ε4 = 0.1

S Sq ε3

2

2 er fr
H R C
r

–1.5 2.0 0.01 –23.97831
–1.0 2.0 0.01 –15.84972
–0.5 2.0 0.01 –9.073212
.0 2.0 0.01 –3.870458

–1.0 0.0 0.01 –12.10583
–1.0 1.0 0.01 –14.03073
–1.0 2.0 0.01 –15.84972
–1.0 2.5 0.01 –16.70936
–1.0 2.0 0.0 –15.07652
–1.0 2.0 0.01 –15.84972
–1.0 2.0 0.02 –16.15729
–1.0 2.0 0.03 –16.25819

Table 2. Convergence and complexity measures of the system  
in case of = 0.5qS

Method Accuracy goal Timing Steps Evaluation

Adams 

10–20 8.25 205 428 
10–15 7.5625 199 419 
10–10 6.34375 178 367 
10–5 4.75 131 265 

BDF* 

10–20 46.9688 405 497 
10–15 40.1719 392 490 
10–10 22.6094 354 425 
10–5 12.7813 213 252 

ERK** 

10–20 25.3125 48 654 
10–15 19.5625 44 648 
10–10 13.5313 40 641 
10–5 7.48438 28 449 

IRK*** 

10–20 40.5469 84 1397 
10–15 37.7813 81 1393 
10–10 29.375 80 1390 
10–5 25.625 63 1075 

ET**** 

10–20 20.9063 24 718 
10–15 17.3594 22 710 
10–10 13.1719 18 704 
10–5 8.76563 16 512 

*	 Backward difference method
**	 stands for Explicit Runge Kutta
***	 stands for Implicit Runge Kutta
****	stands for Extrapolation
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Conclusion

On the basis of simulation performed through numerical procedures for squeezing 
flow model following inferences are drawn as follows.

	y Squeezing effects have opposite behavior near channel walls. 
	y Suction effect has dominant behavior at the central portal of channel. 
	y Skin friction increases with an increase in third grade parameter. 
	y The effects of squeezing parameters on the velocity profile of the fluid are inverse behavior 

in case of both the suction and the blowing. 
	y Error graphs show that the results have negligible error. Precession of 7 to 8 decimal places 

of accuracy is consistently observed for each scenario. 
	y It can be seen that all five numerical methods are applicable for both non-stiff, i. e., 0510−

and 1010− , as well as stiff, i. e., 1510−  and 2010−  accuracy goals for all four variation of the 
fluidic model, which established the stability and convergence of the numerical 
procedures.

In future one may explore in stochastic numerical methods [27-29] based on artificial 
intelligence algorithms, i. e., neural networks, genetic algorithm, particle swarm optimization, 
backtracking search optimization, fractional evolutionary and swarming techniques, for solu-
tions of non-linear squeezing fluidics models for a very limited class of solvers are available for 
numerical treatment. 
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