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The creation of new materials based on nanotechnology is an important direction 
of modern materials science development. Materials obtained by using nanotech-
nology can possess unique physicomechanical and thermophysical properties, al-
lowing to use them effectively in structures exposed to high-intensity thermome-
chanical effects. An important step of the creation and usage of new materials is 
the construction of mathematical models to describe the behavior of these mate-
rials in a wide range of changes in external influences. One of the possible mod-
els for describing the process of thermal conductivity in structurally sensitive ma-
terials is proposed in this paper. The model is based on the laws of rational 
thermodynamics of irreversible processes and models of a continuous medium 
with internal state parameters. A qualitative study of the constructed model is 
carried out. A difference scheme is constructed in order to find the solution of the 
non-stationary heat conduction problem with allowance for the spatial non-
locality effect. The analysis of the solutions is carried out. 
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Introduction 

The development of technology constantly introduces new, higher requirements for 

existing structural and functional materials. It stimulates the creation of new materials. 
Today, properties improvement of such materials is associated with the synthesis of 

materials from structures that have limited value of properties (for example, extremely strong, 

refractory, thermostable, etc.) Such materials constitute a new class of structural and function-

al material. 

These materials are obtained, mainly, by powder metallurgy, crystallization from an 

amorphous state, and intense plastic deformation. Features of the structure of such materials 

(grain size, a significant fraction of the interfaces, porosity, and other structural defects) are 

determined by the methods of their production and have a significant effect on their physi-

comechanical and thermophysical properties, which differ significantly from the properties of 

analogues with coarse-grained or amorphous structure [1-8]. 
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To date, nano- and sub micro-crystalline structures in the course of intense plastic 

deformation have been obtained in aluminum, iron, magnesium, tungsten, nickel, titanium, 

and their alloys [4-9]. 

Thus, structural and functional materials with micro- and nanostructures have high 

operational characteristics: strength at a sufficiently high level of plasticity, firmness, high 

heat capacity, low thermal conductivity, etc. Such features make it possible to create funda-

mentally new designs, devices and instruments with parameters unattainable with the use of 

traditional materials. 

The development of methods for obtaining bulk (solid) billets with uniform structure 

along the workpiece cross-section, without pores, micro-cracks and other structural defects is 

an urgent task, the solution of which will allow expanding the use of micro- and nanostruc-

tured materials of constructional purpose [4-6]. 

However, there is a significant gap between the technologies which can create new 

materials and the possibilities of theoretical prediction of their physical and mechanical prop-

erties. Especially it concerns the influence of the local structure of the environment on its 

macro properties. 

The methodology of the continuum does not apply to materials with micro- and 

nanostructures in pure form. Nevertheless, it is permissible to extend the methods of continu-

um mechanics that deal with the study of the mechanical behavior of materials at the macro-

level to the micro-level. They proved to be very effective [9]. Such propagation of the meth-

ods of continuum mechanics is called the method of continuous approximation, and the field 

of science in which the behavior of materials with micro- and nanostructures is studied using 

continuous approximation methods is called general mechanics of a continuous medium [9]. 

The key point in this method is the establishment of a link between the characteristics of the 

micro (nano) level and the macro-level. Mathematical models of the behavior of such materi-

als must take into account two existing opposing concepts for describing the structure of any 

solid body – the concept of continuity and discreteness.  

In [10-14], thermoelasticity models were introduced using effective variables of 

temperature and deformation. Based on these models, the temperature and stress fields in a 

flat layer were analyzed at high-intensity surface heating. In this paper, to obtain the heat 

equation, we used the approach proposed by Eringen [15]. The approach uses the influence 

function to describe the effect of non-locality in space, which is reflected in the gradients of 

the target values. 

Mathematical model 

To describe the process of transient heat conduction, let us use the model of a medi-

um with internal state parameters. The choice of this approach is explained by the fact that 

this model allows us to relate the macroscopic behavior of bodies to processes occurring at the 

molecular and sub molecular levels. 
Without taking into account the coupling of the temperature and deformation fields 

the local formulation of the first law of thermodynamics has the form [16]: 

i i VTh q x q                  (1) 

where (*) = ()/t and qi are the projections of the vector of heat flux density on the axis 
Oxi of a rectangular co-ordinate system, i = 1, 2, 3. 

In the case when the characteristic time for changing the external load plays a signif-

icant role when developing a thermomechanical model, it is necessary to take into account the 
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velocity effects both in describing the deformation and in illustrating the process of heat prop-

agation. If the characteristic time of the change in the external load is close in magnitude to 

the transition time of the thermodynamic system into the new state, then it becomes necessary 

to consider the change in the internal structural parameters. To consider the local non-

equilibrium processes of heat accumulation we introduce the scalar internal state parameter, 

sometimes called the thermodynamic temperature. The kinetic equation describing the time 

variation in the linear approximation can take the form [11, 16]: 

* κTt            (2) 

where   are the functions that determine the equilibrium values of the internal state parame-

ters (of the thermodynamic temperature). Since the thermodynamic temperature, in general, 

determines the spectrum of frequencies and amplitudes of atomic vibrations on the free sur-

faces of micro- and nanostructured elements, the coefficient depends on the ratio of the free 

surface areas and the total area of the element for any small volume element. 

Let us define the volume density of free energy in the form of Taylor expansion in a 

neighborhood of the initial values of the arguments (at the temperature T = T0 of the natural 

state). Then, for a neighborhood of a point with a radius-vector, x, belonging to the domain, 
V, occupied by an element of the micro- or nanostructure, we have [16]: 

     1 2, ,A T B T B T                  (3) 

where A(T0,T0) = 0, B1(T0) = 0, B2(T0,T0) = 0. 

In virtue of eq. (3) and relation h A T    [16], where A is the mass density of free 

energy, which is a sufficient condition for the validity of the Clausius-Duhame inequality [11, 

16], the energy conservation law (2) can be written in the form: 

, 1, 2, 3i i VcT c q x q i                  (4) 

where  2 2 2 2
1 2d / d /c T B T B T    and 2

2 / ( )c T B T        are the specific mass heat 

capacities that determine the change in free energy proportionally T  and  , respectively. The 

energy dissipation is usually neglected, and we assume that 0   [16]. 

To obtain the energy conservation law (4) in the form of the heat conduction equa-

tion, it is necessary to specify the expression for the equilibrium value of the state parameter

 . Suppose, that  ,iT x t  , that does not contradict with the basic principles of rational 

thermodynamics of irreversible processes [16]. 

The relations for the projections of the heat flux density vector, qi, concerning spa-

tial non-locality are written: 

( ) ( )

1 2( , ) (| |) ( , ) dT T

i ij j ij j j

V

q p T t x p T t x x             x x x x        (5) 

Here ( )T

ij  are the heat conduction tensor components; (| |) x x  is the influence 

function determining spatial non-locality; V  is the volume of the non-locality zone, and also: 

(| |)d 1
V

    x x x      (6) 

 1 2, 0,1p p   are the influence portions of spatial local and non-local effects, p1 + p2 = 1. The 

influence function is used in the models offered by Eringen [15] to solve problems in the the-

ory of elasticity and based on the idea that long-range forces that are responsible for non-local 

deformation of the material at a given point in space are validly described using the distance 

function (| |) x x , decreasing with growth | | x x . 
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Having solved the eq. (2) with respect to k with the initial conditions  = T0 at t = 0, 

the energy conservation law (4) with provision for the representation (5), can be written in the 

form of the heat conduction equation: 

 

*

0

( ) ( )

1 2

( , )
exp d

, ( , )
(| |) d

t

T T

T T

ij ij j V

i j i jV

T c t t T t
c t

t tt t

T t T t
p p x q

x x x x






  



 
 

        
   
 
 

   
    

   





x

x x
x x

       (7) 

The eq. (7) is fundamentally different from the known one, the former allows us to 

consider the heat conduction process at the macro-level, in view of the delay in heat accumu-

lation, as well as the spatial nonlocality effect. 

One-dimensional model 

There are comparatively few studies where models of the behavior of a non-local 

medium are developed with regard to the specific characteristics of the structure. In the pre-

sent paper, we consider the surface heating problem for a bar in the 1-D setting without taking 

into account the relation between the temperature and stress fields. Under the assumption that 

the temperature depends only on time and the co-ordinate directed along the normal inside the 

body, we write the heat equation as [11, 16]: 

= , (0, ), > 0
T q

c x L t
t x


 

 
 

         (8) 

where  is a density, c – the heat capacity, and q – the heat flux. 

The equation for the heat flux (5) in the one-dimensional case: 

1 2( ) = (| |) d

x a

x a

T T
q x p p x x x

x x
  





 
   

         (9) 

where a is a radius of the non-locality influence zone filled by the continuum conceived as an 

aggregate of material particles, linked one another by cohesive bonds (between adjacent parti-

cles) and long-range forces. 

The influence function is chosen as follows, fig.1, [15, 17, 18]: 

| |
1

(| |) = e , | |<
2

x x

ax x x x a
a






             (10) 

 

 

 

 

 

 

 

Substituting expression (9) into the eq. (8) we obtain the heat equation, taking into 

account the non-local effects: 

Figure 1. The bar and the influence function 
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2

1 22
(| |) d ,    (0, ),    0

x a

x a

T T T
c p p x x x

t x x
x L

x
t   





   
    
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        (11) 

The boundary conditions for the eq. (11) are written in the form: 

1 2 0

0 =0

 (| |) d = ( )

a

x

T T
p p x x x q t

x x
  
 

   
         (12) 

1 2 1

=

(| |) d = ( )

L

L a x L

T T
p p x x x q t

x x
  



 
  

        (13) 

where 
0 1  ( , ( ) )q t q t – the given heat fluxes at the left and right ends of the bar, respectively. 

The initial condition is: 

0( ,0) = = constantT x T       (14) 

Numerical solution 

For the numerical solution of the boundary value problem (11)-(14), a discrete ana-

log was constructed using the integro-interpolation method [19-21]. 

On the uniform grid, the resulting difference approximation has the form: 
1

1

1

( ) ( )

1 2( ) (| ' |) ( ')d '

i

i

i

i

x
x aj j

x
l li i

x
x a x

T T
c h p q x p x x q x x 











 
    

 
      (15) 

The expression for the heat flux at the left boundary of the bar has the form: 

1 1

2 1

1 2 1 2 3 2

0

1 1

3 2

2 1 0

(0)  (| |) d = (0) 2
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2

a j j

j j
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p q p x x p p c q c

x x h
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
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 

  
      

   


 


  (16) 

where ci is the value of the non-locality influence function at the point xi. In connection with 

the symmetry of the function (| |)x x  , the value of the parameter {1,2,3}j . 

Similarly, we arrive at the approximation of the boundary condition on the right 

boundary of the bar. It should be noted that setting the heat flux in the form (16) leads to the 

influence of boundary conditions of the second kind not only on the outermost cells, but also 

on adjacent to them, falling into the segment of the influence of non-locality. 

The resulting difference problem leads to a system of linear algebraic equations with 

a band matrix whose tape width is one more than the number of cells that fall in the segment 

of the non-locality effect (for the case 2a = 4h, the matrix is five-diagonal, 2a = 6h is a seven-

diagonal matrix, etc.). The solution of the resulting system of equations can be obtained by 

any known method. 

Analysis of the results 

To find a numerical solution, we introduce dimensionless parameters and variables: 

*0 0 0

0*

0 0

,    ,   ,    ,   mt T T tt c
z x t T At a a

c t c tT

 


  


      

Calculation for the surface heating when a high-intensity heat flux is given on the 

left boundary and has the form: 
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e
( ) =

( 1)!

m mt mm t
q t

m




                   (17) 

 

 

 

Figure 2 shows the temperature distribution in the bar of length L = 10 at the time 
2 for 1 10 ,  0.1,  2t a h h m      for various values of the parameter p1. Obviously, with an 

increase in the share of accounting for nonlocal effects, the temperature at the boundary 

increases. 

Let us consider the effect of the heat flow intensity at different times on the 

temperature distribution in the bar of length L = 5 with parameters 10.2,  0.5.a p    

The graphs presented in figs. 3-5 show the temperature distribution in the bar at the 

instants corresponding to different stages of high-intensity heating. The time moments 
0.5,  1,  2.5t t t    correspond to the initial stage, the peak and the final stages of heating, 

respectively. The graphs show that the solution corresponds to the given boundary conditions. 

 

 

 
 

Results for curvilinear shell  

Consider a curvilinear plate of thickness L, mean curvature  = (1/R1 + 1/R2)/2, 

where R1, R2 – are the principal radii of curvature of the plate surface. The plate is exposed to 

an external high-intensity pulse. We assume that the thickness of the plate is small in 

comparison with the radii of curvature, and the external load acts along the normal to the 

boundary surface. These assumptions make it possible to assume that the temperature field 

Figure 2. Influence of non-locality parameters on         Figure 3. Graphs of the function of  
the temperature distribution in the bar                          high-intensity heat flux at various parameters, m 

Figure 4. Comparison of the results of calculation          Figure 5. Comparison of the results of 
of the intensity at various parameters m at                      calculation of the intensity at 

the time = 0.5t                                                                    various parameters m at time = 2.5t   
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depends only on time and the co-ordinate 𝑥 directed along the normal to the interior of the 

plate [18].  

The equation of thermal conductivity, in this case, has the form: 

2
q

cT q
x

 


  


     (18) 

Consider boundary and initial conditions for eq. (18) in the form (12)-(14). Then the 

solution can be obtained analogously to the case  = 0.  

To find a numerical solution, we introduce dimensionless parameters and variables: 

   

 

*0 0

0 0 0*

0

0 0

/ ,    ,   ,    ,   exp

,  κ / ,    /
1 !

m m

m

T T tt
z x t c t T At q t Mt mt

t cT

m
M t c a a c t

m

  


    


     

  


 

Calculation of the temperature field is feasible for a plate thickness = 10L  at 8m  . 

Figures 6 show the temperature distributions for different values of the share of influence of 

local effects p1 and the values of curvature  . It is seen that the more the influence of 

nonlocal effects is taken into account (i. e., the smaller the value 𝑝1), the lower the tempe-

rature. 

Figure 6. Temperature distributions for various p1 and κ  : (a) 2t   (b) 5t   

Conclusions 

The proposed model of thermal conductivity in structurally sensitive materials 

makes it possible to take into account the spatial non-locality of the medium. The influence of 

the non-locality and curvature parameters of the plate on the temperature distribution is ana-

lyzed. The proposed model of thermal conductivity can be used later in the study of tempera-

ture stresses that arise in structural elements under intense thermal action. The value of this 

model is the ability to predict the properties of new promising materials. It creates the basis 

for constructing thermodynamic models of the behavior of new structural and functional ma-

terials. 
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Nomenclature

A – mass density of free energy, [Jkg–1] 
c – volumetric heat generation 

density, [Jkg–1K–1] 
h – mass entropy density, [JK–1] 
p1,p2 – parameters of the contribution of the 

local and non-local component, [–] 
q – heat flux vector, [Wm–2] 
q – 1-D heat flow, [Wm–2] 
qV – volume density of internal heat sources 

(sinks) power, [Wm–3] 
T – temperature, [K] 
t – time, [s] 

*
Tt  – relaxation time of the internal state 

parameter, [s] 
V – scope of influence, [m3] 
x – space co-ordinate, [m] 

Greek Symbols 

 – dissipation function, [Wm–3] 
 – mean curvature, [m–1] 
 – material density, [kgm–3]; 

Superscripts 

l – local vector 
nl – non-local vector 
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