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The paper proposes a procedure of experimental data processing by the thin wall 
method for the diagnostics of stationary gas-flows. The procedure is based on 
solving an inverse convective heat transfer problem. It does not use smoothing 
and numerical differentiation of experimental data, and is resistant to measure-
ment errors. Sensitivity coefficients are analyzed to find the most informative 
times for the determination of convective heat transfer parameters with the least 
influence of the measurement error. The numerical examples given show the ef-
fectiveness of the calculation procedure for the heat transfer coefficient and the 
gas-flow temperature determined from discrete measurements of the sensor tem-
perature. 
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Introduction 

The measurement of the heat flux density is an important task in the study of heat 

transfer processes in various science and engineering applications. It constitutes a significant 

aspect of the problem of aerodynamic heating of structures at supersonic flow velocities 

[1, 2]. Modeling of the effect of high-enthalpy gas-flows on heat-shielding materials requires 

the knowledge of the convective heat transfer parameters, such as the flow temperature, Te, 
and the heat transfer coefficient, αe. 

Direct instrumental measurements are possible only for the flow temperature, Te, but 

only in the low temperature region. The heat transfer coefficient, αe, is the proportionality 

factor in the expression for the convective heat flux. It is not a thermodynamic quantity and 

therefore cannot be measured directly. The heat transfer coefficient, as well as the heat flux 

density, is determined by solving inverse heat transfer problems [3-5]. 

Much experience has been gained in studying the convective heat transfer of high-

enthalpy gas-flows with the use of various sensors and experimental data processing tech-

niques [6-12]. The simplest of these are calorimetric heat flux sensors operating by the meth-

od of a thermally thin wall with uniform through-thickness temperature. The schematic view 

of such a sensor is shown in fig. 1. The diameter and thickness of the sensor are selected in 

accordance with the experimental conditions, and are usually a few millimeters. The sensing 

element of the sensor is a thin disk – 1 (plate) of metal with high thermal conductivity (Cu), with 
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an embedded thermocouple – 3. The disk is surrounded by 

thermal insulation – 2 on the lateral and rear sides. There 

can be a thin air gap – 4 between the disk and insulation to 

reduce the heat loss from the rear side. The heat flux density 

is determined by the heating dynamics of the sensitive ele-

ment [11]. The determination procedure can be the follow-

ing. The time derivative of the temperature is graphically 

calculated in the initial period by the heating curve of the 

sensor, which involves an element of subjectivity due to 

statistical measurement error. Or, the derivative is calculated 

numerically, which requires preliminary smoothing of the 

experimental temperature values. After the convective heat 

flux is calculated at a known gas temperature, the heat transfer coefficient is found. Its estima-

tion accuracy is entirely related to the accuracy of measuring the rate of change in the average 

integral temperature of the sensitive element of the sensor. The main assumption of this meth-

od is that the time of measurement must be short in order to neglect the heat sink to the insu-

lating layer. 

The aim of this paper is to develop a procedure for the determination of heat transfer 

parameters by the thin wall method, based on the solution of an inverse problem resistant to 

measurement errors without smoothing and numerical differentiation of experimental data. 

Mathematical formulation of the problem and 

analysis of sensitivity coefficients 

The differential equation for the heating of a thermally insulated sensing element in 

the approximation of a thermally thin body suddenly heated by a high-enthalpy gas-flow can 

be written: 
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where T is the (average integral) temperature, t – the time, ρ – the density, c – the specific 

heat, V and S are the material volume and the heating surface area of the sensing element, 

respectively, and αe is the heat transfer coefficient. The subscript e stands for the gas-flow, and 

0 is for the initial conditions. 

The solution of eq. (1) for stationary values of αe and Te reads: 

 0 e

e 0

1 exp         
T T t V

, , L
T T cL S


  




     


    (2) 

where θ and τ are the dimensionless temperature and time, respectively, and L is the length 

scale equal to the thickness of the (sensing element) plate. The heat flux qe(t) measured by the 

sensor obeys the equation: 
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where q(τ) is the dimensionless heat flux. Dependences (2) and (3) are represented by curves 

1 and 2 in fig. 2. 

Figure 1. Schematic view of a 
calorimetric heat flux sensor: 
1 – thin copper disk, 2 – insulation, 
3 – thermocouple, 4 – air gap 
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An important issue in measurement data 

processing is to know the most informative 

time points for the calculation of the sought 

parameters αe and Te, in which the influence of 

measurement errors on the parameters is mini-

mal. It is solved by analyzing the sensitivity 

coefficients of the solution to the change of 

these parameters [3, 4]. The higher are the 

absolute values of the coefficients, the more 

sensitive is the solution to the change of the 

parameters, and the less is the measurement 

error influence on their calculation. This is a 

necessary condition for a good inverse problem 

solution. We analyze the response of solution 

(2) to the changes in the parameters αe and Te. 

We take the derivative of temperature (2) 

with respect to the sought parameter αe, reduce 

the resulting expression to a dimensionless form, and hence obtain a sensitivity coefficient in 

the form: 
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Analysis of eq. (4) shows that the function Zαe(τ) is non-monotonic (see curve 3 in 

fig. 2). Its maximum is found from the condition: 
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It follows that the co-ordinate of the maximum τmax = 1. Thus, it is worthwhile to de-

termine the parameter αe at low τ in the vicinity of τmax = 1. Substituting this value in eqs. (2) 

and (4), we obtain the values of the temperature θ(τmax) = 1 – exp(–1) ≈ 0.632 and the sensi-

tivity coefficient exp(–1) ≈ 0.368 (points F and E in fig. 2). 

Similar calculations for the sensitivity coefficient ZTe of solution (2) with respect to 

the gas flow temperature Te yield: 
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The maximum values of ZTe are obtained here at large values of the dimensionless 

time τ > 1. The values of ZTe are much higher than the values of Zae , so Te can be estimated 

with greater accuracy than αe and with less sensitivity to measurement errors. 

Calculation procedure for convective heat transfer parameters 

Case 1. The gas-flow temperature Te is known. This is the most common case of es-

timating the heat transfer coefficient αe in practice. Let the i measurements of temperature Ti 

(1 ≤ i ≤ N) be known. Then, we can derive: 

 0

e 0

1 expi
i i

T T

T T
 


   


             (6) 

Figure 2. Temperature, θ, heat flux, q, and 

sensitivity coefficients, Zαe, ZTe, for convective heat 
transfer of an infinitely thin body; 
1 – θ, ZTe; 2 – q; 3 – Zαe 
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Taking the logarithm of eq. (6) to straighten the experimental data, transforming and 

applying the averaging formula for N measurements, we have: 
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where e is the average value of the heat transfer coefficient. 

It should be noted that eq. (7) follows exactly from the least square method when 

experimental data are approximated by a constant. A disadvantage of eq. (7) is that its appli-

cation is limited at small ti → 0. 

This can be avoided by choosing a different approximation of experimental data. 

Consider a time-linear function f(ti, a) with a slope angle equal to the sought constant: 
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The sum of squared deviations of the function f(ti, a) from the experimental values 

of Fi for all 1 ≤ i ≤ N measurements must be minimum: 
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From the condition for the minimum of the functional with respect to the sought pa-

rameter, we have the equation: 
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The solution of the equation yields an explicit formula for the calculation of the heat 

transfer coefficient αe: 
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Finally, let us consider the general case of experimental data approximation on the 

basis of dependence (6). The residual functional in this case reads: 
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The condition for the minimum of functional (10) being met, we obtain a non-linear 

equation to determine the sought heat transfer coefficient αe (through a): 
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its solution requires the use of numerical methods. 

Case 2. The heat transfer coefficient αe is known, while the gas-flow temperature, 

Te, is unknown. This is a purely theoretical case. We choose the temperature scale T close to 

Te. Solution(2) is written: 



Zverev, V., Determination of Convective Heat Transfer Parameters by … 
THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 2, pp. S497-S504 S501 

N 

 0 e e 0
e e

0 0

1 exp     
* *

T T T T
at , a ,

T T cL T T


  



 
        

       (12) 

The unknown quantity is θe. From eq. (12), the averaging for N measurements, we 

obtain: 
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where e  is the average value of the dimensionless gas-flow temperature. A disadvantage of 

eq. (13) is that its application is limited at ti → 0. 

Case 3. The flow temperature Te and the heat transfer coefficient αe are unknown. 

This is a common and the most interesting case for practice. The temperature scale T is also 

chosen to be close to Te. Solution (2), is written: 
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The unknown quantities are θe and a. Now compose the functional of deviations of 

the experimental dimensionless temperature values Fi from the calculated values of θi (a, θe): 
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We require the minimum of the two-variable functional eq. (15). As a result, we 

come to a non-linear system of equations for the calculation of a and θe: 
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The factors in eq. (16) have the meaning of the weight factors in the case of discrep-

ancy between the experimental and calculated values. 

The system must be solved using numerical methods. It should be kept in mind that 

the determination of the unknown parameters requires a wider measurement range with re-

spect to the dimensionless time, τ, because θe is more reliably determined for τ > 1. 

Examples of applying the calculation procedure 

Let us consider a model thermophysical experiment. Let the gas-flow parameters 

are: Te = 1000 
o
С, T0 = 0 

o
С, and e = 100 [Wm

–2
K

–1
]. The thermophysical complex of the 

sensing element material is ρcL = 6000 [Jm
–2

K
–1

]. With these values, the time scale of the 

sensor is t
*
 = ρcL/e = 60 seconds. 

The exact solution of problem (2) is shown by curve 1 in fig. 3. Experimental data 

(symbols) for the solution of an inverse heat transfer problem will be the perturbed values of 

the exact solution θi(1 ± δ) with the relative error, δ, in several arbitrarily chosen time points ti 

= [6; 9; 15; 18] seconds, which is τi = [0.1; 0.15; 0.25; 0.3] for the dimensionless time. 

The results of determining the heat transfer coefficient αe at a known gas temperature 

Te on the basis of eqs. (7), (9), and the solution of eq. (11) are given in tab. 1. It is seen that in 

e 
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the absence of errors in the initial data (δ = 0), 

the parameter e is restored exactly. The 

solution of the inverse heat transfer problem 

is stable with increasing amplitude of error 

in the data. Usually, the actual measurement 

error in experiments does not exceed 5% 

(δ < 0.05). As can be seen, the most accurate 

results are obtained with eq. (7), which is directly related to the positive effect of experimental 

data straightening. Figure 3 shows that the exact solution almost coincides with the tempera-

ture and heat flux curves reconstructed by the value of e found from eq. (11) with erroneous 

experimental data, which confirms the good accuracy of the inverse heat transfer problem 

solution. It should be noted that the conventional graphical calculation of the derivative with 

respect to discrete perturbed temperature values is associated with a large error. 

 The calculation results for the flow temperature Te given in fig. 4 and in tab. 2 were 

obtained with eq. (13) at an exact value of e. The set of experimental values was the same as 

in fig. 3. As follows from the table, the temperature Te is exactly restored due to symmet-

rical oscillations of the experimental results about the (exact) mean value. When using the 

first three experimental points (asymmetric error), the error of restoring Te is quite accepta-

ble. This is evidenced by the temperature and heat flux curves in fig. 4 with the use of the 

restored Te value. 

Figure 5 and tab. 3 show the results of 

solving the inverse heat transfer problem by 

finding two parameters {e, Te} on the basis 

of discrete temperature values in the dimen-

sionless time range τi = [0.2; 0.5; 1.0; 1.1]. It 

Table 1. Restored values of heat transfer 
coefficient, αe, at a known gas-flow 

temperature, Te

 
e∙10-2, 
eq. (7) 

e∙10-2, 
eq. (9) 

e∙10-2, 
eq. (11) 

δ = 0 1.0 1.0 1.0 

δ = 0.05 1.001 1.013 1.011 

δ = 0.1 1.002 1.027 1.021 

δ = 0.2 1.008 1.058 1.043 

Table 2. Restored values of gas-flow 

temperature, Te 

 
Te∙10-3, 
4 points 

Te∙10-3, 
3 points 

δ = 0 1.0 1.0 

δ = 0.05 1.0 0.983 

δ = 0.1 1.0 0.966 

δ = 0.2 1.0 0.933 

Figure 3. Temperature, θ, and heat flux, q, vs. 
time, τ; ○, and Δ – experimental data with error 

δ = 0.1 and 0.2; 1, 4 – exact; 2, 3 and 5, 6 – restored 
values of θ and q at δ = 0.1; 0.2 

Figure 4. Temperature, θ, and heat flux, q, vs. 
time, τ; ○, and Δ – experimental data with error 
δ = 0.1 and 0.2; 1, 4 – exact; 2, 3 and 5, 6 – restored 
values of θ and q at δ = 0.1; 0.2 (by 3 points) 
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can be seen that there is a large scatter in the 

experimental data due to errors in the meas-
urements. The time range is extended due to 

the need for a more accurate determination of 

Te. It is seen from the table that {e, Te} are 

restored quite accurately despite the large error 

in the initial data (see fig. 5). The use of the restored {e, Te} values confirms the good conver-

gence of the temperature and the heat flux to their exact solutions (curves 1 and 4 in fig. 5). 

The performed calculations show the good accuracy and practical reliability of the 

proposed procedure for calculating the temperature Te and the heat transfer coefficient e of 

stationary gas-flow from discrete measurements of the sensing element temperature of the 

heat flux sensor. 

Conclusions 

A procedure for calculating convective heat transfer parameters was proposed for 

the diagnostics of stationary gas-flows by the method of a thermally thin wall. The procedure 

does not use smoothing and numerical differentiation of experimental data, and is resistant to 

measurement errors. 

The coefficients of solution sensitivity to convective heat transfer parameters were 

analyzed to determine the most informative measurement times with the least influence of the 

measurement error. 

The proposed procedure allows one to restore the heat transfer coefficient and the 

temperature of stationary gas-flow from several discrete temperature values in the presence of 

errors in the initial data. 
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