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The system composed of a face covering layer + spatially locally curved substrate 
reinforcing layer + half-space is taken into consideration. It is presumed that this 
framework is compressed at infinity by uniformly distributed normal forces and 
it is required to establish the self-equilibrated normal stresses in that, caused by 
locally curved of the substrate reinforcing layer. The matching boundary and con-
tact value problem is defined within the scope of 3-D geometrically non-linear 
exact equations. Formulated problem’s solution is introduced with the series form 
of small parameter which represents the degree of the aforesaid locally curving. 
These series’ zeroth and first approximation are ascertained with the utilization of 
double Fourier transform. The original of values that are searching is ascertained 
numerically. Corresponding numerical outcomes about the self-equilibrated nor-
mal stress caused by this spatially local curving are presented and discussed.
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Introduction

Two field of studies have risen in the mechanics of fractures of composite materials 
which is under compression owing to the bulging of strengthening elements. The first field of 
study includes various approximate design models (the distribution of the compressive load 
between the filler and the binder is exemplified). The studies in [1-3] are a few of the first ones 
in this area, with recent investigations carried out in [4-7]. 

 Such cases can occur where the material of the reinforcing layer is nanomaterial, for 
instance nanocarbon structures or graphene films [8-10].

The second field of study uses the 3-D geometrically non-linear exact equations of elas-
ticity (or viscoelasticity) theory for studying fracture mechanisms for composite materials. Co-
herent account of these investigations has been made in [11, 12] and a review of the related works 
is given in [13]. State that the matching stability loss problems are considered in [14, 15]. From 
these references, it is concluded that the researches related to the second field of study have been 
worked within the scope of the piecewise homogeneous body model and continuum approach.

The foregoing investigations’ analysis shows that the study of the self-equilibrated 
stresses in the layered and unidirected fibrous composites caused by the bulging of the strength-
ening elements has been made mainly for the cases where it is presumed that the material in-
volves the infinite region. 
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Consequently, up to now the influence of the boundary of the element of construction 
made of such materials on the aforementioned self-equilibrated stresses has not been taken into 
account.

The present paper attempts to fill this gap and studies the self-equilibrated stresses 
caused by the spatially locally curved substrate reinforcing layer.

Problem formulation and 
solution method

We take into account a semi-in-
finite half-space combined to a stack 
consists of two layers (covering layer 
and spatially curved substrate reinforc-
ing layer) as shown in fig. 1. We asso-
ciate the Cartesian co-ordinate system 
Ox1x2x3 with the reinforcing layer as 
shown in fig. 1. we ascertain the po-
sition of the points of the constituents 
by using the Lagrangian co-ordinates 
in this co-ordinate system.

Each reinforcing layer’s thickness will be presumed as constant. Also, it will be pre-
sumed that the semi-infinite half-space and stack materials are homogeneous and isotropic. 
Now let us determine the stress deformation state in the aforementioned system under loading 
at infinity by uniformly distributed normal forces with intensity, p1(p3), acting in layers’ lying 
direction, Ox1(Ox3).

Let us write equilibrium equations, constitutive and geometrical relations for each 
layer and half-space:
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In eq. (1), the conventional notation is applied and the upper indices (1), (2), and (3) 
indicate the binder layer, reinforcing layer and half-space, respectively. 

The substrate layer’s initial insignificant imperfection is given by the middle surface 
equation:
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where ε is a dimensionless small parameter (0 ≤ ε ≪1), ε = A /𝓁1, γ = 𝓁1 /𝓁3. The geometrical 
meaning of the parameters 𝓁1 and 𝓁3 is illustrated in fig. 1. 

It is asumed that on the free-surface of the system, the traction-free condition and the 
components between complete contact conditions on the interfaces are satisfied. 

The arbitrary components of the considered systems’ quantities which characterize 
the stress-strain state are denoted as series in the parameter ε:
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Figure 1. Geometry of the half-space covered by a stack 
consisting of two layers
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The method of solution developed in [12, 14, 15] is employed and the zeroth approx-
imation’s values are determined:
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Let us determine the first approximation’s values. Following equations and relations 
are obtained from eqs. (1), (3)-(5).

The governing field equations:
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The mechanical and geometrical relations: 
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The boundary conditions:
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The contact conditions:
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For the given problem’s solution in eqs. (4)-(10), the exponential double Fourier 
transform with respect to x1 and x3 is applied:
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The solution procedure is not detailed here because it is similar to that detailed in  
[12, 14, 15]. 

Numerical results and discussion

We take into account the distribution of self-equilibrated normal stress σnn /p1 effect-
ing on the interface surface between the binder layer and reinforcing layer. Let us denote the 
Young’s moduli through E(1), E(2), E(3), and the Poisson ratios through n (1), n (2), n (3). We assume 
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that E(2)/ E(1) = E(2)/ E(3)  = 100, E(2) > E(1) = E(3) , p3 = p1, γ = 1, n (1) = n (2) = n (3) = 0.3, x2/h2 = 1.0, 
and x3/h2 = 0. The geometrical non-linearity’s influence on the aforementioned distribution will 
be characterized as σ11

(2),0/µ(2) [µ(2) = E(2)/2(1 + n (2))]. Thus, taking the previously-stated consider-
ation into account we analyse the numerical outcomes. Let us begin the analysis related to the 
dependence between σnn /p1 and x1/h2. This dependencies’ graphs established for different values 
of σ11

(2),0/µ(2) are given in fig. 2:
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Figure 2. Graphs of dependencies; (a) between σnn /p1 and x1/h2 (compressing),  
(b) the dependencies between σnn /p1 and x1/h2 (stretching)

With respect to the mechanical consideration that is well-known, the |σnn /p1| values 
must approach zero with x1/h2. Proof of this prediction is seen by the graphs given in fig. 2. Nev-
ertheless, these graphs show that because of the geometrical non-linearity, the absolute of σnn/p1 
values decrease with σ11

(2),0/µ(2) under tension and also increase with σ11
(2),0/µ(2) under compression 

of regarded material. Qualitatively these results are in agreement with the matching ones given 
in monograph [12]. Hereby, the outcomes exemplify the reliability and effectiveness of utilized 
algorithm and programs.
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Figure 3. Graphs of the dependencies; (a) between σnn/p1 and γ (= 𝓁1 / 𝓁3), (b) the dependencies 
between σnn/p1 and h1/h2 

From fig. 3(a) it can easily be seen that as the values of γ  is decrease, |σnn /p1| approach-
es a limit in which γ is equal to zero, that is to say, approaches the case where the curving of the 
reinforcing layer is a plane one. With respect to the mechanical consideration, σnn /p1 must ap-
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proach the certain limit value with the ratio h1/h2 and this limit value is σnn /p1 which is obtained 
for the case where the spatially curved layer is in an infinite body. This estimation is approved 
with the graph seen in fig. 3(b).

Conclusion

Thus, in the present paper, within the framework of the piecewise homogeneous body 
model with the use of the exact equations of the geometrical non-linear theory, the system 
consisting of a face covering layer + spatially curved reinforcing layer + half-space has been 
studied. A method for the solution of the problem by applying the double Fourier transforma-
tion was developed. Numerical outcomes on the self-equilibrated stresses caused by the locally 
curved reinforcing layer under stretching and also under compressing of the mentioned system 
have been presented and analyzed. 
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