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This paper concerns fractional-order bidirectional associative memory neural net-
works with distributed delays. Based on inequality technique and Lyapunov func-
tional method, some novel sufficient conditions are obtained for the existence and 
exponential stability of anti-periodic solutions are established. An example is given 
to show the feasibility main results.
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Introduction

The artificial neural networks (NN) enables the computing interaction of neurons. A 
neurons organized in couple layers is said to be a bidirectional associative memory (BAM) NN. 
The neurons in one layer interact with the neurons in the other layer. Thus, it shows the physical 
connection of the interconnecting network components.

The NN models (BAM) are widely used in scientific branches for instance signal 
and image processing, pattern recognition, combinatorial optimization and artificial intelli-
gence. In studies conducted in these areas, it is important to ensure that the NN are stable.

So the time delay can significantly influence the efficiency, of recurrent NN. Thus, 
the presence, uniqueness, and stability of the balance point for BAM NN in the recent past 
have attracted the interest of researchers and have been discussed; see, for example, [1-8] and 
references therein. With the theory and practice of fractional differential equations developing 
recently [9-11], studies investigating the complex conditions of fractional NN have been inten-
sified. First, a new class of cellular NN with a fractional derivative was created. The feature 
of this NN model is that the first-order cell previously used replaces a non-integer order. The 
inclusion of fractional-grade cells in chaotic cells in a two-cell system with less than three of 
the required parameters. At this point, the fractional theory has developed a new approach to 
this theory. In the studies carried out in this area [12], they examined the structure of chaos with 
harmonic equilibrium theory and prepared an algorithm for numerical solution. Thus, fractional 
differential equations and a fractional neuron network system were examined for chaos control 
and synchronization. In [13], they considered a Hopfield NN of fractional structure and ob-
served their stability by using the energy function.
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Recently, studies on NN in fractional order are given in [14-16]. Kaslik and Sivasun-
daram [17, 18] also obtained interesting results in their studies on this subject. Wu et al. [19] 
examined the generalized Gronwall inequality and predictions of Mittag-Leffler functions. Alo-
fi et al. [20] examined the distributed latency finite time stability of fractional sequential net-
works. Hopfield [21] is integer, bilateral relational memory model was first processed by Kosko 
[22]. This NN is of great importance for applications in the field of pattern recognition and 
automatic control. Recent studies of these networks have also been reported [23-26]. However, 
there are fewer studies on fractional networks in the literature. 

The aim of this study is to investigate delayed BAM type fractional order in anti-pe-
riodic (AP) solutions for discrete time networks and to find global exponential stability. Our 
results prevent delays from being limited. Using techniques involving a new Lyapunov func-
tionality and inequality technique, we present a new delay-dependent stability criterion for 
variable delay NN. Our results can be applied to more general networks with a wider time 
delay function. Our criterion is easy to control and implement in practice and therefore, has an 
important place in both application areas and in the design of NN. 

Preliminaries

In this section, let us first recall some basic definitions of fractional calculation. We 
will use them to prove our main results in three chapters. Let N and R be the set of positive 
integers and the real numbers set, respectively.

Definition 1 [9] The fractional integral of order α > 0 of a function y : (a, b] → R: 
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Definition 2 [11] The Riemann-Liouville fractional derivative of order α > 0 of a con-
tinuous function y : (a, b] → R:
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Definition 3 [11] The Caputo fractional of order α > 0 of function y on (a, b] is ex-
plained by the Riemann-Liouville derivatives described previously:
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In this study, we think that fractional-order BAM NN are delayed in leakage conditions:
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where i = 1, 2,..., n, j = 1, 2,...,m.  The Dα
t, denotes Caputo fractional derivative of order α,  

0 < α < 1.
Consider the following initial conditions with the system of eq. (1):
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where τ = max{τij}, δi, and ϕj are continuous and real valued functions.
Let ui(t) : R → R be continuous in t, ui(t) is said to be T – AP on R: 

( ) ( ) for alli iu t T u t t R+ = − ∈

Throughout this paper, for i = 1, 2,..., n, j = 1, 2,...,m, it will be assumed that (T1) ai, 
dj, Ii, bij, cij, eij : R → R and Yij : [0, ∞) → R, and:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

 ( ) ( ), ( ) ( )

     ,  , 

    ,  , 

    ,  ,

( ) ( ),

i i j j

ij i ij i

ij i ij i

ij i ij i

i i

a t T a t d t T d t

b t T f x b t f x t x R

e t T k y e t k y t y R

c t T g x c t g x t x R

I t T I t t R

+ = + =

+ =− − ∀ ∈

+ = − − ∀ ∈

+ = − − ∀ ∈

+ = − ∀ ∈

The (T2) bij, eij are locally Lipscitz continuos:
( ) ( )  ij ij ib x u b x xδ+ − ≥

( ) ( )  ij ij ie y u b y yω+ − ≥
where x, y ∈ R, i = 1, 2,...n, j = 1, 2,..., m, and there existence positive constants δi and ωi. 

The (T3): 

( ) ( )(0) 0, ,| ( ) |ij ij ij ij j ijf f x f y x y fi x Aσ= − ≤ − ≤

( ) ( )(0) 0, ,| ( ) |ij ij ij ij ij ijh h x h y x y h x Cν= − ≤ − ≤

( ) ( )(0) 0, ,| ( )ij ij ij ij ij ijk k x k y x y k x Bη= − ≤ − ≤

(0) 0,| ( ) ( ) | , ( )ij ij ij ij ij ijg g x g y x y g x Lυ= − ≤ − ≤

where existe costant  βij ≥ 0, n  ij ≥ 0, ηij ≥ 0, υij ≥ 0, Aij ≥ 0, Cij ≥ 0, Bij ≥ 0, and Lij ≥ 0 such that for 
all x, y, ∈ R, i = 1, 2,..., n, j = 1, 2,..., m.

The (T4) β > 0 constant is available. Thus:
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where:
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Lemma 1 Let (T1)-(T4) be satisfied and ζ
~
(t) = [x~(t), y~ (t)], where:
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where t > 0, i = 1, 2,..., n, j = 1, 2,..., m. 
Lemma 2 Let hypotheses (T1)-(T4) be satisfied. Let ζ *(t) = [ x*(t), y*(t)]T, where  

x*(t) = x*
1(t), x*

2(t),... x*
m(t), y*(t) = y* 1(t), y* 2(t),..., y* n(t)  then, the solution of the system (1) hav-

ing the condition (2) and (3). Let ζ(t) = [x1(t, x2(t),..., xn(t), y1(t), y2(t),..., yn(t)]T is a solution of 
system (1) with the initial value [δ1(t), δ2 (t),..., δn (t), ϕ1 (t), ϕ2(t),..., ϕn(t),]T . Then there exist 
constant β > 0 and A = A(β) > 1 such that:
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Remark. If ζ *(t) = [ x*(t), y*(t)]T, where x*(t) = x*
1(t), x*

2(t),... x*
m(t), y*(t) = y* 1(t),  

y* 2(t),..., y* n(t) is the T-AP solution of system (1), with the use of Lemma 2 and Definition 4 that 
ζ *(t) is globally exponentially stable.

Main results

In this section, our main results are:
Theorem 1. Under assumptions (T1)-(T4). The system (1), has only one T-AP solution 

ζ *(t) which is globally exponentially stable.
Proof. Let  ζ (t) = [ x(t), y(t)] where x(t) = [x1(t), x2(t),..., xn(t)]T,  

y(t) = [y1(t), y2(t),..., yn(t)]T, is a solution of system (1) with initial conditions:
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In this way with respect to Lemma 2, the solution ζ (t) = [ x(t), y(t)] is limited:
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where t > 0, i = 1, 2,..., n, j = 1, 2,..., m. 
Using (1) and (T1)-(T4), for an arbitrary natural number of κ, we obtain:
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Thus, for any natural number k, (–1)k+1 ζ [t +(k + 1)T] are the solutions of system (1). 
Then, by Lemma 2, there exists a constant A > 0 such that:
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So, for an arbitrary natural number of p we get:
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where i = 1, 2,..., n, j = 1, 2,..., m. 

In view of eqs. (5) and (6), we can select enough big constants L1 > 0, L2 > 0, and 
positive constant ε1, ε2 such:
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It follows from aforementioned that {(–1)pζ (t + pT)} uniformly approach to an inces-
sant function ζ *(t) = [ x*(t), y*(t)]T, where:   
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incessant function on any compact set of R. In this way, allow p → ∞, we get:
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Thence ζ *(t) is a solution of system (1).
Consequently, by Lemma 2 we can substantiate that ζ *(t) has a global exponential 

stability. Thus the proof is completed.
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An example

Take into account the following:
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We have Aij = Cij = Bij = Lij = 1, system (7) has availed all the axioms conditions in 
Theorem 1. Thus, the system (7) provides a T-AP solution. This results affirm the global expo-
nential stability for AP solution with fractional order.

Conclusion

This manuscript we have investigated the AP solutions for delayed BAM type frac-
tional NN. Lyapunov functional and Inequality techniques have been employed to solve the 
governing model. In chapter Preliminaries, some basic prefaces and preliminaries have been 
stated. The effectiveness of the obtained results are shown through some examples. A criterion 
for the AP problem of delayed fractional BAM NN is given in chapter Main Results to con-
struct global exponential stability for the problem discussed. An example is given to illustrate 
the effectiveness of the new result. It is important to note that, the results of discrete time ex-
ponential stability of these NN have not been explored. The BAM NN need not be applied to 
discrete-time systems. Artificial NN require discretization for continuous time. Therefore, in 
this study, the dynamics of discrete-time NN play an important role in theory and practice. The 
criterion was applied in a fractional order equation. Global exponential stability, it is known 
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that NN play an important role in many areas such as applications and synchronization in secure 
communication. Therefore, the global exponential stability analysis of the equation is important 
both in theory and in practice.
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