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In this paper, we first give necessary conditions in which we can decide whether 
a given curve is biharmonic or 1-type harmonic and differential equations char- 
acterizing the regular curves. Then we research the Frenet formulas of involute of 
a unit speed curve by making use of the relations between the involute of a curve 
and the curve itself. In addition we apply these formulas to define the essential 
conditions by which one can determine whether the involute of a unit speed curve 
is biharmonic or 1-type harmonic and then we write differential equations charac- 
terizing the involute curve by means of Frenet apparatus of the unit speed curve. 
Finally we examined the helix as an example to illustrate how the given theorems 
work.
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Introduction

To establish a relationship between the curvatures and the characterizations of a given 
curve in Euclidean space and non-Euclidean spaces and then to expound it from the language 
of geometry has been the focus of interest for many researchers. Some curves are renowned by 
their explorers such as involute and evolute curves, [1]. Huygens [2] discovered the involute 
curves while trying to make a more accurate clock. Involute curves have lots of utilizations in 
so many areas apart from mathematics. One of the application of these areas is undoubtedly the 
thermal sciences. Therefore, many studies have been conducted in Euclidean and non-Euclide-
an spaces related to involute curves. To cite some examples Senyurt et al. [3], Bulca et al. [4], 
and Senyurt et al. [5] are the works that have received considerable attention. Thanks to metic-
ulous studies, it has been revealed that curves can be classified [6]. After this classification, a 
great many number of articles have been written, [7, 8] and also [9]. In this paper, we first take a 
unit speed curve which we call through the work as main curve, then write the characterizations 
of an involute curve by means of Frenet apparatus of the main curve. Eventually we elucidate 
the characterizations of the involute curve as an example while assuming the helix as a main 
curve. Now we may look at the main concepts related to the curve theory. If any differentiable 
curve α, ||α′|| = ϑ is given in E3 then the relationship between the Frenet vector fields and its 
curvatures is stated as [10]:
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Frenet vector fields can be expressed by means of covariant derivative of these vectors 
and this relation is known as Frenet formulas:

, ( ),T T TD T N D N T B D B Nϑκ ϑ κ τ ϑτ= = − + = − (1)
Let α and β be two differentiable curves. If the tangent vector of α is perpendicular to 

the tangent vector of β, then we call β as the involute of α. According to this definition, follow-
ing parametrization can be given:

( ) ( ) ( ) ( ), ( ) ,s s s T s s c s cβ α λ λ= + = − ∈ (2)
When β is the involute of α, shown in fig. 1, we have such relation that  

d[α(s), β(s)] =| c − s | ∀s ∈ I and c = constant. The relationship between the curvatures of 
α and β is formulated:

2 2

1 1 2 2
( ) ( )

( ) , ( )
( ) ( )

s s
s s

s c s c s
κ τ κτ κ τκ τ
κ κ κ τ

+ ′ ′−
= =

− + −∣ ∣ ∣ ∣
(3)

Also the relationship between the Frenet apparatus of α and β is given:

1 1 12 2 2 2
, ,T B T BT N N Bκ τ τ κ

κ τ κ τ

− + +
= = =

+ +
(4)

Here the set {T1, N1, B1, κ1, τ1 } denotes the Frenet apparatus of β [10] .
Let a differentiable curve α and a function f ∈ C (E3, R) be given. Then the operator 

D defined:
3

3
( ): ( )] ( , ) , [ ( ), ] ( )( )[ tED T t C E D t f D f t fαα α α′′ ′× → = =  (5)

is called a Levi-Civita connection and the value of α′ (t)(f ) ∈ R is called as covariant derivative 
of the function f along the curve α. By this definition, following theorem can be given. Let two 
vector fields X and W defined on E3 and another two vector fields Y, Z from C2-class defined on 
E3 be given. Then the following propositions are true:

3 3
( )

3

( )
( )

( )

[10]

( ) , : ,

( ) ( ) , ( , )

X X X

X W X W

f P X X

X X

D Y Z D Y D Z
D Y D Y D Y

D Y f P D Y f E P E

D fY X f Y fD Y f C E

+

+ = +
= +

= → ∈

= + ∈





(6)

Let α be the unit speed curve, then the mean curvature vector field H along the curve 
α is defined:

D Nα α κ′ ′= =H (7)
Then the mapping defines:

2: ( ( )) ( ( )), TI I Dχ α χ α∆ → ∆ = −H H (8)

is called a Laplace operator [7, 8]. Let α be the unit speed curve and H be the mean curvature 
vector field along the curve α. Then we have:
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Figure 1. Evolute and involute curves
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–– If ΔH = λH then α is called a 1-type harmonic curve, λ ∈ R,
–– If ΔH = 0 then α is called a biharmonic curve [7, 8].

Let α be a non-unit speed curve, then the following propositions hold according to 
Levi-Civita connection.
–– α is a biharmonic curve if and only if:

3 23( ) 0, ( ) ( ) ( ) 0, 2( ) ( ) 0ϑκ ϑκ ϑκ ϑκ ϑτ ϑκ ϑκ ϑτ ϑκ ϑτ′ ′′ ′ ′= + − = − − =

–– α is a 1-type harmonic curve if and only if:
3 23( ) 0, ( ) ( ) ( ) , 2( ) ( ) 0ϑκ ϑκ ϑκ ϑκ ϑτ ϑκ λϑκ ϑκ ϑτ ϑκ ϑτ′ ′′ ′ ′= + − = − − =

Let α be a non-unit speed curve, then the differential equations characterizing the 
curve α according to unit tangent vector T is given:

( )

3 2
2 1 0

2
2 2 2 2

0 1

2

0

, 3 2

3 2 ][11

T T TD T D T D T Tλ λ λ

κ ϑ κ ϑ κ ϑ τ κλ ϑ κτ λ ϑ κ τ
τ ϑ κ ϑ κ ϑ τ κ

ϑ κ τλ
ϑ κ τ

+ + + =

′ ′′ ′′ ′ ′ ′ ′ ′      = = + − − + + + +      
      

′ ′ ′ = − + + 
 

(9)

Characterizations of involute of a curve

Frenet formulas for involute of a curve

When we say α, unless we stated otherwise, we mean a unit speed curve in Euclid-
ean 3-space with the Frenet apparatus of {T, N, B, κ, τ } and when we mention β, it stands for 
the involute of the curve α in the same space with the Frenet apparatus of {T1, N1, B1, κ1, τ1 },  
ϑ =|| d/ds β(s)||.

Theorem 1. Let β be the involute of a differentiable curve α. Then the Frenet formu-
las for the curve β, with respect to Levi-Civita connection D is given: 

N

N

N

D T N
D N T B

D B N

κ
κ τ
τ

=

= − +

= −
(10)

Proof: Since DT1 T1 = ϑκ1N1 and also we have ϑ = ||β′ (s) || = (c – s)κ. Putting the equiv-
alent of T1, κ1, and N1 from eq. (4), we get:

1

1

2 2

1 1 1 2 2 2 2

1

( )T

T N

D T N T B
c s

D T D N T B

κ τ κ τϑκ ϑ
κ κ τ κ τ

κ τ

 + −
= = +  − + + 

= = − +

By the similar way τ1, B1 can be replaced by their equivalents and it follows from  
eq. (6):

2 22 2 2 2

2 2
2 2 2

3/2

3/2 2

1 ( )( )
( )

( ) ( )
( )

N ND T D B T

N B

κτ κ τ τ κκ τ
κ τκ τ κ τ

κτ κ τ κ τκ τ
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 ′ ′ ′− − + = + −   ++ +   
 ′ ′− ′− + + − 

+ + 

(11)
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In a similar case:

1 1 1 1

32 2 2 2
2 2 2

( )

( ) ( )

T

N

D B N

D T B T B

c s

ϑτ

τ κ κτ κ τϑ κ τ
κ τ κ τ κ κ τ

= −

 
′ ′− 

+ = − − + 
+ +  

 
 

−




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From eq. (6), we achieve:

( ) 3 32 2 2 2 2 2
2 2 2 22 2

1 ( ) ( )( ) ( )

( ) ( )
N ND T D B T Bκτ κ τ κ τ κτ κ τ τ κτ κ

κ τ κ τ κ τκ τ κ τ

   
′ ′ ′ ′− −   ′ ′+ = − − +   

+ + +   + +   

(12)

Finally by making use of the eqs. (11) and (12) we obtain:

2 2 2 2 2 2

2 2 2 2 2 2 2 2

1

1

N

N

D T T N

B

D T N

κ τκ τ κ
κ τ κ τ κ τ

τ κ κτ κ τκ τ
κ τ κ τ κ τ κ τ

κ

 ′ ′   −  = + + +       + + +     
 ′ ′    ′ ′− + − −       + + + +     

=

(13)

and

2 2 2 2 2 2 2 2

2 2 2 2 2 2

1

1

N

N

D B T

N B

D B N

κτ κ τ κ ττ κ
κ τ κ τ κ τ κ τ

κ ττ κ τ
κ τ κ τ κ τ

τ

 ′ ′   ′ ′− = + − −       + + + +     
 ′ ′    − − +       + + +     

= −

(14)

hence proof is completed.

Harmonicity of involute of a curve

Theorem 2. Let β be the involute of a differentiable curve α with the mean curvature 
vector field H1, then the followings are true with respect to connection.
–– β is a biharmonic curve if and only if:

3 2 2 30, 0, 0κ κ κτ κκ ττ κ τ τ τ′′ ′ ′ ′′− − = + = + − = (15)
–– β is a 1-type harmonic curve,  λ ∈ R, if and only if:

3 2 2 3, 0,κ κ κτ λκ κκ ττ κ τ τ τ λτ′′ ′ ′ ′′− − = − + = + − = (16)
P roof: Since β is the involute of α, by the eq. (8), we can write:

1 ND N T Bκ τ= = − +H

If we write the image of mean curvature H1 under the mapping of Laplace operator Δ:
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2

2

: ( ( )) ( ( )) ( )

( )
( )

( ) ( )

N N

N

N N

N N N N

I I D D N

D T B
D D T B

D N D T D T B D B

χ β χ β

κ τ
κ τ

κ κ τ τ

⊥ ∗∆ → ∆ = −

= − − +

= − − +
′ ′∆ = − − − + +

H

After setting the counterparts of DNT, DNN, and DNB from the eq. (10), we arrange the 
last equality with regarding to T, N, and B:

3 2 2 3( ) ( 3( ) ( ))ND N T N Bκ κ κτ κκ ττ κ τ τ τ′′ ′ ′ ′′∆ = − − + + + + −

If we take the condition that eq. (8) of b, that is, ΔH1 = 0 into account, then 1. propo-
sition holds and if we take the condition that eq. (8) of a, that is, ΔH1 = λH1 into account, then 
2. proposition holds. This yields the required result and completes the proof.

Differential equation of involute of a curve

Theorem 3. Let β be the involute of the unit speed curve α. Then the differential equa-
tion characterizing the curve β with respect to principal normal N:

3 2
3 2 1 0 0N N Nc D N c D N c D N c N+ + + =

Here c0, c1, c2, c3 are the coefficients:
2 2

0 2

2 2
1 3

3( )( ) ( )( ) ,

( )( ) ,

c c

c c

κκ ττ κτ κ τ κ τ κ τ κτ κ τ κτ

κ τ κ τ κ τ κτ κ τ κτ κ τ

 ′ ′ ′ ′ ′′ ′′ ′′ ′′= + − + + − = − 
 ′ ′′ ′′ ′ ′ ′ ′ ′= − + + − = − 

Proof: From eq. (10), we obviously have DNN = –κT + τB. Taking the covariant 
derivative of this phrase with respect to N two times:

2 2

2 2 2

( ) ( )

( )

N N N

N N

N

D D N D T B
T D T B D B

T N B N

D N T N B

κ τ
κ κ τ τ

κ κ τ τ

κ κ τ τ

= − +
′ ′= − − + +

′ ′= − − + −

′ ′= − − + +

(17)

and again from eq. (10):
2 2 2

2 2 2 2

2 2 2 2

3 2 2 2 2

( ) ( ( ) )

( ) ( )

3( ) ( ) ( )

( ( ) ) 3( ) ( ( ) )

N N N

N N N

N

D D N D T N B

T D T N D N B D B

T N T B B

D N T N B

κ κ τ τ

κ κ κ τ κ τ τ τ

κ κκ ττ κ τ κ κ τ τ τ

κ κ τ κ κκ ττ τ κ τ τ

′ ′= − − + +

′′ ′ ′ ′′ ′= − − − + − + + +

′′ ′ ′ ′′= − − + + + − + +

′′ ′ ′ ′′= + − − + + − +

(18)

By taking advantage of the following system we can evaluate the equivalents of T and B:

( )2 2 2
N

N

D N T B

D N T N B

κ τ

κ κ τ τ

= − +
 ′ ′= − − + +

Now we first multiply both sides of the first equality by –τ′ and second equality by τ, 
after adding both sides of the equalities, we divide both sides by κτ′ –κ′τ:
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( )2 2
2
N NT D N D N N

τ κ τ

κτ κ τ κ
τ τ

κτ κ τ τ κ τ

+
= − +

′ ′ ′ ′
′
′ ′− − −

By the same way, we first multiply both sides of the first equality by –κ′ and second 
equality by κ, after adding both sides of the equalities, we divide both sides by κτ′ – κ′τ:

( )2 2
2
N NB D N D N N

κ κ τκ κ
κτ κ τ κτ κ τ κτ κ τ

+′
= − +

′ ′ ′ ′ ′ ′− − −  
Finally setting the counterparts of T and B into the eq. (18):

( )( )

( )( )
( )

2 2
3 2

2 2

3

N N ND N D N D N

N

κ τ κ τ κτ κ τ κ τκτ κ τ
κτ κ τ κτ κ τ

κ τ κτ κ τ
κκ ττ

κτ κ τ

′ ′ ′′ ′ ′ ′′+ − + −′′ ′′−
= +

′ ′ ′ ′− −
 ′′ ′′+ −
 ′ ′− +
 ′ ′−
 

After multiplying both sides of previous equality by κτ ′ – κ′ τ we can rearrange them:
3 2

2 2

2 2

( ) ( )

( )( )

( )( ) 3( )( ) 0

N N

N

D N D N

D N

N

κτ κ τ κ τ κτ

κ τ κτ κ τ κ τ κ τ

κ τ κ τ κτ κκ ττ κτ κ τ

′ ′ ′′ ′′− + − +

 ′ ′ ′ ′′ ′′ ′+ + − + − 
 ′′ ′′ ′ ′ ′ ′+ − + + − = 

Putting the coefficients as c3, c2, c1, c0, respectively, we obtain desired result which 
completes the proof.

Numerical example

Let α(s) = 1/(2)1/2(coss, sins, s) be a curve with unit speed tangent vector. Then the 
Frenet apparatus of α are:

1 1( sin ,cos ,1), ( cos , sin ,0), (sin , cos ,1)
2 2

T s s N s s B s s= − = − − = −

κ = 1 / 21/2 and τ = 1 / 21/2. The Frenet formulas can be evaluated:
1 1(cos ,sin ,0), (sin , cos ,0), (cos ,sin ,0)
2 2T T TD T s s D N s s D B s s−

= = − =

According to these traditional Frenet apparatus, we have the involute of α, which we 
call here as β:

	

1( ) (cos ( )sin , sin ( ) cos , )
2

s s c s s s c s s cβ = − − + −

where s is the arc length parameter of α, c ∈ R.
After having done simple calculations we can write the Frenet apparatus of β:

1 1 1 1 1
2( cos , sin ,0), (sin , cos ,0), (0,0,1) and = , 0T s s N s s B

c s
κ τ= − − = − = =

−
Now we can clarify the characterizations of β in two distinct cases.
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According to Theorem 2, ΔH1 = N1 = DNN = H1, that is, β is of 1-type harmonic. Ac-
cording to Theorem 3, differential equation characterizing β is given as D2

N N +  N = 0.

Main results

Corollary 1. Let β be the involute of a curve α. If α is a circular helix, then β is of 
1-type harmonic.

Proof: Suppose that α is a circular helix, from eq. (16) we have κ = constant and 
τ = constant. It follows that Laplace image of mean curvature vector DNN of α is equal to  
Δ(DNN ) = (κ2

  +  τ2)(–κT + τ B).
Hence we obtain that λ = κ2 + τ2, so the proof is completed.
Corollary 2. Let β be the involute of a curve α. If α is a general helix, then β is bihar-

monic.
Proof: Assume that α is a general helix, so we have κ/τ = sbt. It follows that Laplace 

image of mean curvature vector DNN of α gives us κ/τ = –τ′ /κ′ and κ′′ /τ ′′ = κ′ /τ ′, that is, we 
obtain κ/τ = sbt.

This verifies the eq. (15) hence the proof is completed.

Conclusion

We define a new way of covariant derivative and then derive the Frenet formulas by 
making use of the relations between the involute of a curve and the curve itself. In addition we 
apply these formulas to define the essential conditions by which one can determine whether the 
involute of a curve is biharmonic or 1-type harmonic and then we write differential equations 
characterizing the involute of the curve.
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