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In a recent paper, Liversage and Trancossi have defined a new formulation of drag 
as a function of the dimensionless Bejan and Reynolds numbers. Further analy-
sis of this hypothesis has permitted to obtain a new dimensionless formulation of 
the fundamental equations of fluid dynamics in their integral form. The resulting 
equations have been deeply discussed for the thermodynamic definition of Bejan 
number evidencing that the proposed formulation allows solving fluid dynamic 
problems in terms of entropy generation, allowing an effective optimization of de-
sign in terms of the Second law of thermodynamics. Some samples are discussed 
evidencing how the new formulation can support the generation of an optimized 
configuration of fluidic devices and that the optimized configurations allow mini-
mizing the entropy generation.  
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Introduction

All things are flowing. (Heraclitus)
Liversage and Trancossi [1] have produced a new definition of the drag force in fluid 

dynamics problems. They have rewritten the traditional expression of drag force:

	 21
2

= D fD C A uρ 	 (1)

by determining that the drag coefficient CD is based on Reynolds number and Bejan number 
according to eq. (2):

	 2
Be2
Re

= w L
D

f L

AC
A

	 (2)

where Aw is the wet area, Af  – the front area, ReL – the Reynold Number related to fluid path 
length, and Bejan number has been adopted in the diffusive definition by Bhattacharjee and 
Grosshandler [2], as formulated by Mahmud and Fraser [3, 4] and generalized by Awad and 
Lage [5] and Awad [6, 7]:
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2 2 2

2 2Be ∆ ∆ ∆
= = =

pl pl plρ
µν ρν µ

	 (3)

Trancossi and Sharma [8] have verified eq. (2) in the case of a low thickness high 
chamber wing profile with a good accuracy versus both experimental and CFD data. Trancossi 
and Pascoa [9] have produced an adequate formulation of the conservation laws in fluid dy-
namics, that takes advantage of new container terms, which are based on Bejan number, and 
a new derived term, which has been named Bejan number ξ, which has the same dimensional 
formulation and is obtained: 

	 ( )
2 2 2

2 2Be ∆ ∆
= = = − = −m n m n

l p l p l p p ξ ξ
µν ρν ρν

	 (4)

where m and n are a generic point of the domain

	
2

2=m m
l pξ
ρν

	 (5)

A more accurate analysis of the formulation in eq. (5), shows evidently that in fluid 
dynamics is equivalent to the Hagen number:

	
3 3

2Hg ∆ ∆
= =

P l P l
L L

ρ
µν µ

	 (6)

Awad [10] have analyzed the Hagen number vs. the diffusive Bejan number. The first 
difference is that they have radically different physical meanings: Hagen number represents the 
dimensionless pressure gradient while the Bejan number represents the dimensionless pressure 
drop. In particular, they are coincident in the cases where the characteristic length, l, is equal 
to the flow length, L. The definition of Bejan energy relates to Hagen number by the following 
relation:

	
3 2

2 2
d d dHg
d d d

 
= = = 

 

L p L pL L
x x xv v

ξ
ρ ρ

	 (7)

Consequently, Bejan energy can be defined as the rate of change of the Bejan energy 
over the flow path. Trancossi and Pascoa have also expressed a still preliminary formulation of 
conservation laws as a function of Bejan number and Bejan energy. 

Awad [11] and Klein et al. [12] have remarked that also the second definition of 
Bejan number, a second dimensionless number is defined Bejan number in scientific literature 
as the efficiency of convective heat exchange according to the second law of thermodynamics 
by Sciubba [13]. Efficiency according to First law is the ratio of useful output and used input. 

	 out

in

W
E

η = 	 (8)

Energy efficiency is a fundamental parameter of energy analysis, but it does not seem 
adequate for the effective optimization of a physical system. For design analysis and optimi-
zation, effectiveness seems much more adequate. The processes that involve heat exchange 
allows assessing the heat-exchange effectiveness:
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	 actual

ideal

Q
Q

ε = 	 (9)

A more general definition applies to any physical phenomenon and is obtained in 
terms of the ratio of the efficiencies according to the First law of thermodynamics:

	 in,ideal out,actualactual

ideal in,actual out,ideal

E W
E W

η
ε

η
= = 	 (10)

Efficiency can also be defined according to the Second law of thermodynamics in 
terms of a ratio of entropy generations:

	 desired desired

total desired undesired

S S
S S S

ε = =
+

 

  

	 (11)

In convective heat exchange and fluid dynamic processes can be stated that irreversibility 
arises because of the combination of heat transfer phenomena and viscous effects of the fluid [14, 
15]. Similar considerations allowed Bejan and Sciubba [16] to define the efficiency of any process 
involving fluid flow and convective heat exchange according to the Second law of thermodynam-
ics. In the case of heat exchange phenomena, effectiveness is the ratio of entropy generations in a 
convective exchange fluid flow and the total entropy generation by both the heat exchanged and the 
pressure drop which is proportional to the necessary pumping or propulsive power:

	 gen,
local

gen, gen,

T

T p

s
s s

ε ∆

∆ ∆

=
+



 

	 (12)

In particular, Sciubba defined such a magnitude local Bejan number is the dimension-
less ratio of the entropy created by heat transfer and the total entropy. Sciubba has also provided 
the integral formulation at the domain level, with volume V. It can be defined as the global 
Bejan number and has the following formulation:

	
gen,

gen,

gen, gen, gen, gen,

d
Be

d d

T
T V

T p T p
V V

s V
S

S S s V s V

∆
∆

∆ ∆ ∆ ∆

= =
+ +

∫

∫ ∫





 

 

	 (13)

It can also be expressed:

	 gen,

gen, gen,

1Be
1 Br

T

T p

S
S S

∆

∆ ∆

= =
++



 

	 (14)

where Br is Brinkman number, which is equal to:

	
2

Br =
∆
u

k T
µ 	 (15)

where u is the velocity of the fluid, and k is the conductivity. Consequently, it results:

	 2 2
1 1Be

1 Br
1

∆
= = =

+ ∆ +
+

∆

k T
u k T u

k T
µ µ

	 (16)
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It is evident that the Bejan number definition by Sciubba applies only to convective 
heat exchange. The diffusive definition by Bhattacharjee and Grosshandler is much more general 
because it can be applied to any fluid dynamic phenomenon, including convective heat exchange. 

Friction losses in fluids

Herwig and Schmandt [17] have studied the possibility of more effective modeling of 
losses in terms of drag for external flows and head loss for internal flows in terms of entropy 
generation or exergy disruption rate. 

Fluid flows are treated according to two different categories. External flows can be 
expressed in terms of drag force [18-21]: 

	 2

2 ∞=D D fF C A uρ 	 (17)

where CD is the drag coefficient, and Af is front section area. 
Two different formulations of drag are present in literature. The first one is a function 

of head loss [21-25] coefficient:

	 2

2
∆ = avP K uρ 	 (18)

where K is the head loss coefficient. In both cases, a second pressure loss formulation can be 
adopted. It can be expressed as a function of friction coefficient f: 

	 2 2d
d 2 2

= − → ∆ av av
p f Lu P f u
x D D

ρ ρ 	 (19)

where f is the friction factor, L – the flow path length, and D – the hydraulic diameter. Friction 
factor f =τ/(ρu2/2) represents the friction effect of shear stress. It is not fully representative of 
friction phenomena. Drela [26] has observed that the friction factor represents only what hap-
pens on the surface being defined by eq. (19).

	 3
0

d d d d∞=
 = = ∫∫ ∫∫f xy ey

D   x z  u f x zτ ρ 	 (20)

Head loss or dissipative terms consider all the losses in the boundary layer along its 
development and after the detachment. 

	 3

0

d d d d d∞

 ∂
= = 

∂  
∫∫ ∫ ∫∫xy e D

u  y  x z  u C  x z
y

δ

Φ τ ρ 	 (21)

The meaning of the two terms can be explained at the domain level by fig. 1, in a case 
of external fluid dynamics, and fig. 2, in the case of internal fluid dynamics.

Consequently, this paper accounts only the losses according to the dissipative model, 
because they give an exhaustive answer to the problem of the determination of losses. 

Any real process in the domain of fluid dynamics generates losses of mechanical en-
ergy that increases the internal energy of the fluid. Thus, the total energy is maintained. It means 
that energetic analysis in fluid dynamics deals with energy availability [27] and usefulness [28] 
and then with the second law of thermodynamics [29]. It can be expressed as the entropy gen-
eration or degradation of exergy or reduction of available work, and degradation of available 
energy in the flow field.
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If S  it is the rate of entropy generation, the processes can be analyzed in terms of ex-
ergy destruction rate:

	 loss 0 genX T S=  	 (22)

The dissipated mechanical power is equal to:

	 ref ref loss 0 gen,L D fE F u PAu X T S= = ∆ = =   	 (23)

The case of an internal and an external fluid dynamic problem are reported in tab. 1.

Bejan number and the Second law of thermodynamics 

Assuming uref the reference velocity for the specific problem, is evident that the gen-
eral expression of pressure losses is:

u
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Figure 1. Dissipative terms and their graphical representation in external 
fluid dynamics

Figure 2. Dissipative terms and their graphical representation in internal 
fluid dynamics 
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	 loss gen,loss loss
ref refw w

T Tp S X
A u TA u

∆ = = ∆  	 (24a)

Thus, the Bejan number related to losses can be expressed:

	

2 2

gen gen2 22
ref

2 2 2

loss loss2 2
ref

1

Be
1
w

L

w

l lT S T S
A u ml p

l lX X
A u m

ρ ν ν
ρν

ρ ν ν

∆ = ∆

= ∆ =

∆ = ∆

 






 



	 (24b)

Equations (24a) and (24b) allows demonstrating that Bejan number related to flu-
id-dynamic problems is a thermodynamic related magnitude that refers to entropy generation 
and exergy dissipation rate. 

Integral equations of fluid dynamics

The integral equations of fluid dynamics can be expressed as follows.

Conservation of mass

The equation of conservation of mass is:

	 = = → = =   i e i i i e e em m m A u A u mρ ρ 	 (25)

and being:

	 , , , , e, e, e, ,; ; ;= = = =   i i i x i x i i i y i y e e x x e e y e yA u m A u m A u m A u mρ ρ ρ ρ 	

it results

	 2 2 2 2 2 2
e , ,y e, e,y= = → = → + = +        i e i i x i xm m m m m m m m m 	

where 

	 = = → = =   i e i i i e e em m m A u A u mρ ρ 	 (26)

Table 1. Fluid-dynamic friction coefficient, force loss and pressure 
loss as a function of entropy generation and exergy dissipations

External fluid-flow Friction coefficient Force loss Pressure loss

genS Entropy 
generation

0 gen
3

2
D

f

T S
C

A uρ ∞

=


0 gen
D

T S
F

u∞
=



0 gen
D

w

T S
p

A u∞
∆ =



X Exergy 
disruption 3

2
D

f

XC
A uρ ∞

=


D
XF
u∞

=


D
w

Xp
A u∞

∆
∆ =



Internal fluid-flow Friction coefficient Force loss Pressure loss

genS Entropy 
generation

0 gen
0 3

2

w av

T S
K

A uρ
=



0 gen
K

av

T S
F

u
=



0 gen
K

w av

T S
p

A u
∆ =



X Exergy 
disruption 0 3

2
=



w av

XK
A uρ K

av

XF
u

=


K
w av

Xp
A u
∆

∆ =
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And, according to fig. 3.

	 , ,

, ,

cos cos
;

sin sin
= =  

 = =  

   

   

i x i i e x e e

i y i i e y e e

m m m m
m m m m

φ φ

φ φ
	 (27)
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ϕi

 vi vi,y

 vi,x

Figure 3. Vector forces and velocity

Conservation of momentum

	 , e, , ,

, , , e,

 − + = − +


− + − = − +

i x i x e x i i i x e e e x

i y i e y e y i i i y e e y

p A p A R A u u A u u

p A p A R W A u u A u u

ρ ρ

ρ ρ
	 (28)

	 , e, , ,

, , , ,

− + = − +
 − + − = − +

 

 

i x i x e x i i x e e x

i y i e y e y i i y e e y

p A p A R m u m u
p A p A R W m u m u

	 (29)

	

, ,

2 2

2 2
, e,

2 2
e

cos cos

cos cos

sin sin

sin sin

− + = − + =

= − +


− + − = − + =

= +

i i i e e e x i i i i x e e e e x

i i i i e e e e

i i i e e e y i i i y e e y
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φ φ ρ ρ

ρ φ ρ φ

	 (30)
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 

 

   

 






	 (31)

If the considered system can be considered horizontal or at large curvature, eq. (30) 
becomes: 
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2 2

2 2


− + = − +



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 

 

i i e e x
i i e e
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i i e e

m mp A p A R
A A

m mR W
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ρ ρ
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2 2

2 2

 − + = − +


− = − +

i i e e x i i i e e e

y i i i e e e

p A p A R A u A u

R W A u A u

ρ ρ

ρ ρ
	 (33)

Conservation of energy

The general expression of the conservation in a fluid can be expressed in both differ-
ential and integral form. The integral form has been reported in eqs. (34) and (35). 

	

 

 

2

in in
Work In Heat In

Energy In

2

out in
Heat OutWork Out

LossesEnergy In

2
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i i
i
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e e L
e

e ib

u pm gz W Q

u p pm z W Q m

ρ

ρ ρ

 
+ + + + = 

 

  ∆
= + + + + + 

 









 





	 (34)

where Win is the work input, Qin – the heat input, Wout – the work output, and Qout – the heat 
output.

	

22 2 2 2 2
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2 2 2 2 2
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	 (35)

If the fluid is compressible it can be assumed the ideal gas law, it results:

	
R
p
T

ρ = 	

and then

	

22 2 2 2 2
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2 2 2 2 2

22 2 2 2 2 2
out out

2 2 2 2 2 2
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2
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If ∆ = −i ep p p , ∆ = −i eu u u , ∆ = −i ez z z , it becomes:

	
2

2g g g
L

av i

pu p W Qz
mg mgρ ρ

  ∆∆ ∆ ∆ ∆
+ ∆ + + + = 

 
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A new expression of fluid dynamics laws

If we consider a 2-D flow in a 2-D closed domain, fig. 1, the steady-state of any fluid 
system [30, 31] can be described by conservation laws for the control volume with inlets and 
outlets of mass, energy, work together with internal dissipations, fig.1.

	 2g
2

p y uρρ∆ = ∆ = ∆ 	 (37)

which represent Archimedes law (p=ρgy) [32], Torricelli’s law (gz=0.5u2) [33] and dynamic 
pressure (p = 0.5ρu2) [34]. Equation (37) can be expressed:

	
2 2 2 2 2 2 2

2 2 2 2 2 22
  ∆∆ ∆ ∆ ∆

+ ∆ + + + = 
 



 

L

av av

pu l l l p l W l Q lg y
m mρ ρν ν ν ν ν ν

	 (38)

By considering the definition of Bejan Number by Mahmud and Fraser, which is ex-
pressed by equation (3) it is possible to define the following terms. 

Definition of Bejan numbers and Bejan energies

Pressure Bejan number

	
2 2 2

, ,2 2 2Be i e i e
P P i P e

av av i e

p p p pl p l l ξ ξ
ρ ρ ρ ρν ν ν

 −∆
= = = − = − 

 
	 (39)

or

	 ( )
2 2

, ,2 2Be R RP i e P i P e
av

l p l T T ξ ξ
ρν ν
∆

= = − = − 	 (40)

where ( )/2av i eρ ρ ρ= + . Hence, if ρ = constant it simplifies as:

	
2 2

, ,2 2Be i e
P P i P e

p pl p l ξ ξ
ρ ρν ν

−∆
= = = − 	 (41)

Kinetic Bejan number

	
2 22 2 2 2

, ,2 2 2Be
2 2 2

i eK
K K i K e

av

u upl u l l ξ ξ
ρν ν ν

 ∆∆
= = = − = −  

 
	 (42)

	
2 22

, ,2constant Be
2 2

i e
K K i K e

u ul ρ ρ
ρ ξ ξ

ρν
 

= → = − = −  
 

	

Hydrostatic (potential) Bejan number

	 ( )
2 2 2

, ,2 2 2Be g gH
H i e H i H e

av

Pl l ly y y ξ ξ
ρν ν ν
∆

= ∆ = = − = − 	 (43)

	 ( )
2

, ,2constant Be gH i e H i H e
l y yρ ρ ξ ξ
ρν

= → = − = −   	 (44)
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Work Bejan number

	
2 2 2

, ,2 2 2Be i e i e
W W i W e

W W W Wl W l l
m m m

ξ ξ
ν ν ν

− −∆
= = = = −

   

  

	 (45)

Heat Bejan number

	
2 2

, ,e2 2Be i e
Q Q i Q

Q Ql Q l
m m

ξ ξ
ν ν

−∆
= = = −

 

 

	 (46)

Loss Bejan number

	
2 2

2 2Be 0 0L L
L L

av av

p pl l ξ
ρ ρν ν
∆ ∆

= = − = − 	 (47)

Reaction Bejan number  

	
2

2
R

R
wav

l
A

ξ
ρ ν

= 	 (48)

Weight Bejan number

	
2

2 gG
wav

l m
A

ξ
ρ ν

= 	 (49)

Conservation equations

It is then possible to determine the different equations of the conservation laws.

Conservation of mass

	 Re Re= → = → = → = 

i i e e
i e i i i e e e i e i i e e

u l u lm m A u A u A A A Aρ ρ
ρ ρ

µ µ
	

	
2 2

   
= → = → =   

   
 

i e
i e i i i e e e i i i e e e

u l u lm m A u A u A Aρ ρ ρ ρ ρ ρ
µ µ

	

	 , ,=i i K i e e K eA Aρ ξ ρ ξ 	 (50)

Relation between Bejan energy and Reynolds number

	
2ReRe = → =K Kρ ξ ξ

ρ
	 (51)
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Conservation of momentum

	

( )

( )

2 2

2 2

2 2
2 2

2 2

2 2 2

2 2 2

2 2
2 2

e2 2

cos cos

cos cos

sin sin g

sin sin

i i i e e e x
av av

i i i i e e e e
av av

i i i e e e y
av av av

i i i i e e e
av av

l lA p A p R

l lA u A u

l l lA p A p R m

l lA u A u

φ φ
ρ ν ρ ν

φ ρ φ ρ
ρ ν ρ ν

φ φ
ρ ν ρ ν ρ ν

φ ρ φ ρ
ρ ν ρ ν


− + =



= − +


 − + − =


= +


	

	
( ) ( )
( ) ( )

, , ,e ,e ,

, , ,e ,e ,y

cos cos

sin sin

 − − + = −


+ − + = − +

i i P i K i e e P K w R x

i i P i K i e e P K w R w G

A A A

A A A A

φ ξ ξ φ ξ ξ ξ

φ ξ ξ φ ξ ξ ξ ξ
	 (52)

Bernoulli theorem

Bernoulli theorem equation is obtained by the law of conservation of momentum ex-
pressed on a flow line and can be expressed:

	 21 g constant
2

u z pρ ρ+ + = 	 (53)

It can be expressed utilizing Bejan energy by multiplying both terms for l2/ρν2 and 
becomes:

	 , , , ,e ,e ,e+ + = + +k i z i p i k z pξ ξ ξ ξ ξ ξ 	 (54a)

Assuming that Bejan energies could be summed it is possible to write a condensed 
form:

	 , ,+ + + +=K H P i K H P eξ ξ 	 (54b)

or in function of Bejan number:

	 ( ) ( )Be Be Be Be 0K H P K H P+ ++ + = = 	 (55)

Conservation of energy

Conservation of energy equation is expressed:

	 , , , , ,

,e ,e ,e ,out ,out Be
k i z i p i W in Q in

k z p W Q L

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

+ + + + =

= + + + + +
	 (56)

	 , , , , , , BeK H P i W in Q in K H P e W out Q out Lξ ξ ξ ξ ξ ξ+ + + ++ + = + + + 	 (57)

	 ( )Be Be Be Be Be BeK H P W Q L+ + + + = 	 (58)

	 ( )Be Be Be BeK H P W Q L+ + + + = 	
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The Second law of thermodynamics and fluid laws

Being expressed in terms of the pressure difference (3), Bejan number caused by 
fluid dynamic losses has been referred to both exergy dissipation and entropy generation (23). 
Natterer and Camberos [35] and Arntz et al. [36, 37] evidences the correspondence between 
exergy states and fluid dynamic energy states. As it will be easy to show the importance of the 
use of Bejan number and/or Bejan energy in the above equations is that they can be directly 
related to second law of thermodynamics. 

Second law expression of Bejan number and Bejan energy

It is consequently possible to express all the terms in the conservation equations in 
thermodynamic terms according to second law in terms of both entropy created or exergy 
destroyed:

	

2 2

gen gen2 22
ref

2 2 2

loss loss2 2
ref

1

Be
1
w

L

w

l lT S T S
A u ml p

l lX X
A u m

ρ ν ν
ρν

ρ ν ν

∆ = ∆

= ∆ =

∆ = ∆

 






 



	

Pressure Bejan number

	
2 2 2

2 2 2BeP P P
av

l p l lT S X
m mρν ν ν

∆
= = ∆ = ∆ 

 

	 (59)

or

	 ( )
2 2 2

, ,e , ,e , ,e2 2 2BeP P i P P i P P i P
l l lX X X X

m m m
ξ ξ

ν ν ν
= − = − = −   

  

	 (60)

Kinetic Bejan number

Being exergetic state correspondent to kinetic energy:

	 21
2

=

KX uρ 	

it results:

	 ( )
2 2 2 2

2 2
,gen ,loss2 2 2 2

1Be
2

K
K i e K K

pl l l T lu u S X
m m

ρ
ρν ρν ν ν

∆
= = − = ∆ = ∆ 

 

	 (61)

where BeK 

	 ( )
2 2 2

, ,e
, , , ,e2 2 2Be K i K

K K i K e K i K
l X l X l X X
m m m

ξ ξ
ν ν ν

= − = − = −
 

 

  

	 (62)

Hydrostatic (potential) Bejan number

It is:

	 ( )
2 2 2 2 2

2 2 2 2 2Be g gH
H i e H H

av

Pl l l l T ly y y S X
m mρν ν ν ν ν

∆
= ∆ = = − = ∆ = ∆ 

 

	 (63)
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and consequently:

	
2 2

, ,
, , 2 2Be H i H e

H H i H e
l X l X
m m

ξ ξ
ν ν

= − = −
 

 

	 (64)

Work Bejan number

It is evidently related to second law:

	 ( )
2 2 2 2

in out2 2 2 2BeW W W
l W l l T lW W S X

m m m mν ν ν ν
∆

= = − = ∆ = ∆


  


  

	 (65)

Hence, assuming that, 

	 21
2

=

KX uρ ,	

It results:

	 ( )
2 2 2

, ,out in out ,in ,out2 2 2BeW W in W W W
l l lW W X X

m m m
ξ ξ

ν ν ν
= − = − = −   

  

	 (66)

Heat Bejan number

It is also related to second law:

	 ( )
2 2 2 2

in out2 2 2 2BeQ Q Q
l Q l l T lQ Q S X

m m m mν ν ν ν
∆

= = − = ∆ = ∆


   


  

	 (67)

and results:

	 ( )
2 2 2

,in ,out in out ,in ,out2 2 2BeW Q Q Q Q
l l lQ Q X X

m m m
ξ ξ

ν ν ν
= − = − = −   

  

	

Loss Bejan number

	
2 2 2 2

gen loss2 2 2 2Be 0L L
L

av av

p pl l l lT S X
m mρ ρν ν ν ν

∆ ∆
= = − = ∆ = ∆ 

 

	 (68)

Reaction Bejan number

	
2

2=R
wav

l R
A

ξ
ρ ν

	 (69)

Weight Bejan number

	
2

2 gG
wav

l m
A

ξ
ρ ν

= 	 (70)

Second law expression of conservation laws

It is then possible to determine the different equations of the conservation law of 
thermodynamics.
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Conservation of mass

	
2 2 2 2

, , ,e ,e
2 2 2 2= = =
  

   

K i K i K K
i i i i e e e e

l TS l X l TS l X
A A A A

m m m m
ρ ρ ρ ρ

ν ν ν ν
	 (71)

which is

	 , , ,e ,e= = =
  

K i K i K K
i i e e

i i i i e e e e

TS X TS X
A A A A

A u A u A u A u
	 (72)

Conservation of momentum

	
( ) ( )

( ) ( )

2 2

, , ,e ,e ,2 2

2 2

, , ,e ,e ,y2 2

cos cos

sin sin

i e
i P i K i e P K w R x

i e
i P i K i e P K w R w G

l lA X X A X X A
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l lA X X A X X A A
m m

φ φ
ξ

ν ν
φ φ

ξ ξ
ν ν


− − + = −


 + − + = − +

   

 

   

 

	 (73)

Bernoulli theorem

	
2 2 2 2 2 2

, , , ,e ,e ,e
2 2 2 2 2 2+ + = + +
     

     

K i H i P i K H Pl X l X l X l X l X l X
m m m m m mν ν ν ν ν ν

	 (74)

and become:

	 ( ) ( )
2 2

, , , , , ,e ,e ,e2 2+ + + += + + = = + +     

 

K H P i K i H i P i K H P e K H P
l lX X X X X X

m m
ξ ξ

ν ν
	 (75)

or

	 ( ) ( ) ( )
2

, , ,e , ,e , ,e2+ +  = − + − + − 
     



K H P i K i K H i H P i P
lBe X X X X X X

mν
	 (76)

Conservation of energy

Conservation of energy equation can be expressed:

	 , , , ,in ,in ,e ,e ,e ,out ,outk i z i p i W Q k z p W Q LBeξ ξ ξ ξ ξ ξ ξ ξ ξ ξ+ + + + = + + + + + 	 (77)

	

( )

( )

2

, , , ,in ,in2

2 2

, , , ,out ,out2 2

K i H i P i W Q

K e H e P e W Q L

l X X X X X
m

l lX X X X X X
m m

ν

ν ν

+ + + + =

= + + + + +

    



     

 

	 (78)

	 ( ) ( ), , , ,in ,in , , , ,out ,outK i H i P i W Q K e H e P e W Q LX X X X X X X X X X X+ + + + = + + + + +           	 (79)

Analysis of a specific sample case

The effects of compressibility can be evaluated by considering the ideal gas law:



Trancossi, M., et al.: Diffusive Bejan Number and Second Law of Thermodynamics Toward ... 
THERMAL SCIENCE: Year 2019, Vol. 23, No. 6B, pp. 4005-4022	 4019

	 R R RppV T T p Tρ
ρ

= → = → = 	 (80)

If a certain length, l, of the pipe is considered, the loss of pressure can be expressed 
as BeL and is:

	
2 2 2

loss gen gen2 2 2
ref

1BeL
w

l l lp T S T S
A u mρρν ν ν

= ∆ = ∆ = ∆ 



	 (81)

It is then possible to evaluate:

	
2 2 2

, ,e
, , gen2 2 2

1Be BeP i P
P i P e L L

w

l X l X l T S
A um m

ξ ξ
ρν ν ν

− = → − = ∆ =
 



 

	 (82)

from which it result:

	
2 2

gen gen2 2
1 1( ) ( )i e i e

l lP P T S P P T S
m m
ρ ρ

ρν ρν
− = ∆ → − = ∆ 

 

	 (83)

and then:

	 gen gen gen
1 1 i i e

i e
P P PP P T S S S mR

m m R P
ρ

−
− = ∆ = ∆ → ∆ =  



 

	

An accurate verification of the proposed equations allows to consider some samples, fig. 4. 

l

1 2

 v1, p1  v2, p2

21

l

 v1, p1  v2, p2

d

d 1 d 2

(a) (b)
Figure 4. Two samples of flow in ducts

Throttle flow

An ideal gas is considered. It can be considered the ideal gas law RpV T=  and the 
constancy of entropy 1 2=h h . By applying the previous method, it can be easily obtained the 
entropy generation during the flux along a horizontal pipe without friction between two sections 
1 and 2.  

If the total loss of entropy is ∆p

	
2

2
1 2

1 11

d ln ln 1pp pS R R R
p p p−

 ∆
∆ = − = − = − 

 
∫ 	 (84)

	 gen
1

pS mR
p
∆

=

 	 (85)

Moreover, the result which has been obtained in eq. (22) is verified according to sci-
entific literature.
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Flow with friction

It can be possible to analyze the steady and adiabatic flow of an ideal gas through the 
segment of a pipe. In this case, the same result of eq. (22) can be expressed: 

	 gen gen
1 1

R ln Rp pS m S m
p p
∆ ∆

= → =  	 (86)

The work lost because of irreversibility is:

	 ( ) ( )lost 1 0 1 2 0 2 0 1 2 genW m h T s h T s mT s TS−= − − − = ∆ =  

  	 (87)

	 lost gen 0
1

R pW TS m T
p
∆

= =

 	 (88)

It can be remarked that the decrease in exergy is proportional to the pressure drop as 
well as the mass flow rate.

Conclusions 

In a recent paper, Liversage and Trancossi have defined a new formulation of drag as a 
function of the dimensionless Bejan and Reynolds numbers. Further analysis of this hypothesis has 
permitted to obtain a new dimensionless formulation of the fundamental equations of fluid dynam-
ics in their integral form. This activity shows that fluid mechanics problems can be modeled by 
mean of Bejan number, which allows correlating the fluid dynamic problems to entropy generation. 

In particular, it demonstrates that fluid dynamic phenomena can be described by new sets 
of dimensionless equations that account both first and second law of thermodynamics. This direct 
correlation which currently under further investigation, allows describing fluid phenomena as func-
tion of dimensionless exergy dissipation rate or entropy generation rate. 

The resulting equations have been deeply discussed for the thermodynamic definition of 
Bejan number evidencing that the proposed formulation allows solving fluid dynamic problems in 
terms of entropy generation, allowing an effective optimization of design in terms of the second 
law of thermodynamics. 

A final sample has allowed verifying that in simple cases results coincides with the ones 
obtained by traditional methods. Further activity is planned in the direction of defining an effective 
method for solving fluid dynamic problems in the domain of second law of thermodynamics. 
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Nomenclature
A	 –	 area, [m2]
Af	 –	 front Area, [m2]
Aw	 –	 wet Area, [m2]
Be	 –	 Bejan number 
BeH	 –	 hydrostatic Bejan number
BeK	 –	 kinetic Bejan number 
6eL	 –	 Bejan number caused by losses
BeP	 –	 pressure Bejan number
BeQ	 –	 Bejan number by Heat transfer
BeW	 –	 Bejan number caused by Work

CD	 –	 drag coefficient 
g	 –	 acceleration of gravity, [ms–2] 
K	 –	 pressure loss coefficient
k	 –	 heat conduction coefficient, [Wm–2K–1]
l	 –	 characteristic length, [m]
m	 –	 mass flow, [kgs–1]

p	 –	 pressure, [Pa]
∆p	 –	 pressure difference [Pa]
∆pH	 –	  hydrostatic pressure [Pa]
∆pL	 –	  pressure losses [Pa]
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Q	 –	 heat flux, [W]
Qin	 –	 inlet heat transferred, [J]
Qout	 –	 outlet heat transferred, [J]
Re	 –	 Reynolds number, [ ( )/ /ul ulρ µ ν= = ]
S	 –	 integral entropy rate, [WK–1]
s	 –	 local entropy rate, [Wm–2K–1]
gen, Ps ∆ 	 –	 local entropy rate by dissipation, 

[Wm–2K–1]
gen, Ts ∆ 	 –	 local entropy generation by heat 

exchange, [Wm–2K–1]
T	 –	 temperature, [K]
u	 –	 velocity, [ms–1]
ue	 –	 outlet velocity, [ms–1]
ui	 –	 inlet velocity, [ms–1]

inW 	 –	 power input, [W]
outW 	 –	 power output, [W]

Wout	 –	 work output, [J]


PW 	 –	 pressure power, [W]
X 	 –	 exergy dissipation flux, [W]



HX 	 –	 hydrostatic exergy dissipation flux, [W]


KX 	 –	 kinetic exergy dissipation flux, [W]
lossX 	 –	 exergy dissipation flux by loss, [W]


PX 	 –	 pressure exergy dissipation flux, [W]


QX 	 –	 exergy dissipation flux by heat, [W]


WX 	 –	 exergy dissipation flux by work, [W]

Greek symbols

ε	 –	 heat-exchange effectiveness 
η	 –	 efficiency
μ	 –	 dynamic viscosity [Pa s]
ν	 –	 kinematic viscosity [m2/s]
ρ	 –	 density, [kgm–3]
ξH	 –	 hydrostatic Bejan energy
ξK	 –	 kinetic Bejan energy 
ξL	 –	 Bejan energy caused by losses
ξP	 –	 pressure Bejan Energy 
ξQ	 –	 Bejan energy by Heat transfer
ξW	 –	 Bejan Energy caused by Work
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