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In this survey, the ionic current along microtubules equation is handled by apply-
ing the modified Khater method to get the solitary wave solutions that describe the 
ionic transport throughout the intracellular environment which describes the be-
havior of many applications in a biological non-linear dispatch line for ionic cur-
rents. The obtained solutions support many researchers who are concerned with 
the discussion of the physical properties of the ionic currents along microtubules. 
Microtubules are one of the main components of the cytoskeleton, and function 
in many operations, comprehensive constitutional backing, intracellular transmit, 
and DNA division. Moreover, we also study the stability property of our obtained 
solutions. All obtained solutions are verified by backing them into the original 
equation by using MAPLE 18 and MATHEMATICA 11.2. These solutions show the 
power and effective of the used method and its ability for applying to many other 
different forms of non-linear partial differential equations.
Key words: longitudinal wave equation, modified Khater method,  

stability property, solitary wave solutions

Introduction

 Microtubules this word consists of three syllables which are (micro + tube + ule). 
These three syllables are items of the cytoskeleton. The cytoskeleton existed orbit the cyto-
plasm. Tubular polymers of tubulin can regrow to 50 µm and also be highly dynamic. The 
external diameter of a microtubule is around 24 nm where the domestic diameter is around  
12 nm. It existed in eukaryotic cells and some bacteria. It also formed by the polymerization of 
a dimer of two globular proteins, alpha, and beta-tubulin. Microtubules play an important and 
vital role in several cellular processes. These prevent architecture of the cell, microfilaments, 
and intermediate filaments. It also prevents the domestic architecture of cilia-and flagella. It 
is not only just that but also supply platforms for intracellular transport. Microtubules are im-
plicated in miscellaneous of cellular processes and also inclusive the movement of secretory 
vesicles, organelles [1-10].
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Marc Kirschner and Tim Mitchison suggested in (1986s) that, the microtubules can 
employ its dynamic characteristics of growth and contraction at their plus ends to probe the 3-D 
space of the cell. In contrary to regular dynamism microtubules, that has a half-life of 5-10 min-
utes [11-15]. Electrostatics of nanosystems is considered as one of the applications of the micro-
tubules. Electrostatics of nanosystems plays an important and vital role of morphogenesis [16-20].

As we see, many methods were discovered to serve this great idea and for example 
The (G ′/G)-expansion method, extended (G ′/G)-expansion method, generalized (G ′/G)-expan-
sion method, novel (G ′/G)-expansion method, tanh-function method, extended tanh-function 
method, the modified simple equation method, the auxiliary equation method, the sine-Gordon 
expansion method, the hyperbolic function method, new auxiliary equation method, an alge-
braic method, the extended trial equation method, extended simplest equation method, an im-
proved generalized Jacobi elliptic function method, extended coupled sub-equations expansion 
method, Khater method (a new auxiliary equation method), and so on [21-30].

The rest of this paper is systematized In Section 1, we apply the modified Khater meth-
od [31]-[35] to the longitudinal wave equation [36]-[39] to get the exact and solitary traveling 
wave solutions. Also, we study the stability property of the obtained solutions. In Section 2,  
conclusions are given.

Solitary wave solutions

This section carries out the modified Khater method regarding ionic currents along 
with microtubules equation after obtaining exact and solitary traveling solutions regarding the 
model that draws the ionic transport for the duration of the intracellular environment. We illus-
trate the fundamental non-linear mindset about ionic currents up to expectation is oriented us-
ing microtubules. Consider the Ionic currents along microtubules equation keep in the follows 
form [40]: 

2 2
2  1 1  2      0xxt x x t tℑ Λ + Λ + ℘ℑ ℵΛΛ −℘ℑ Λ =℘ L L (1)

where ℘1, ℘1 are the transverse or longitudinal element hence resistance regarding an ele-
men-tarrying (ER) such up to expectation ℘1 = 109 Ω, ℘2 = 7 ⋅ 106 Ω, L = 8 ⋅ 10–9 Ω, and dura-
bility ℑ,  are, respectively representing, the amount greatest capacitance concerning the ER 
then equal 1.8 ⋅ 10–15 F, the non-linearity over an ER capacitor in an MT. Using the traveling 
wave transformation:
 ( ) ( ), ,  x t x ctΛ = Λ = Λ = − 

where is anxiety velocity:
2 2

2 1 12 0c c ç′′′ ′′ ′℘ ℑ Λ + Λ + ℘ℑℵΛΛ − ℘ℑΛ =L L (2)
Integral eq. (2) concerning Ʊ with zero constant of integration:

2   0a b d′′ ′Λ − Λ + Λ − Λ = (3)
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Balancing the highest order derivative term and the non-linear term in eq. (3), leads to 
According to the general solution of the suggested technique, we get the solution of eq. (3) be 
in the subsequent paradigm:

( ) ( ) ( ) ( ) ( )2 2
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f f f fa K a K a K b K b− −Λ = + + + +   


(4)
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where a0, a1, a2, b1, b2 and k are arbitrary constants while f(Ʊ) satisfies the following auxiliary 
equation:

 
( ) ( )
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Ln
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α β σ− 
′ = + + 

  

 



where α, β, and σ are arbitrary constants. Substituting eq. (4) and its derivatives into eq. (3). 
Collecting all terms of the same power of K f(Ʊ). Solving the obtained algebraic system by any 
computer software program:
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According to the value of parameters in Family 1, we get the solitary wave solutions 
of eq. (1):
 – when [β2 – 4ασ < 0, σ ≠ 0] we get:
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 – when [β2 – 4ασ > 0, σ ≠ 0] we get:
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 – when [β = α/2 = κ and σ = 0] we get:
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 – when [α = 0, β ≠ 0, and σ ≠ 0] we get:
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 – when [σ = 0, β ≠ 0, and α ≠ 0] we get:
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According to the value of parameters in Family 2, we get the solitary wave solutions 
of eq. (1):
 – when [β2 – 4ασ < 0, σ ≠ 0] we get:
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 – when [β2 – 4ασ > 0, σ ≠ 0] we get:
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According to the value of parameters in Family 3, we get the solitary wave solutions 
of eq. (1): 
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 – when [β2 – 4ασ < 0, σ ≠ 0] we get:
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 – when [β2 – 4ασ > 0, σ ≠ 0] we get:
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 – when [β2 – 4ασ = 0] we get:
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Stability property

This section of our research paper investigates one of the basic properties of any mod-
el. It examines the stability property for the ionic current along with microtubules equation by 
using a Hamiltonian system. The momentum in the Hamiltonian system given by the following 
formula:

( )21  d
2

M
−

Λ= ∫  





(25)

where  is arbitrary constant. Consequently, the condition for stability of solutions:

| 0 c
M
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∂
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where 𝒽 is arbitrary constant.
For an example of studying the stability property for eq. (7), we get:
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Figure

The 3- and 2-D plots of the eqs. (7), (8), and eq. (15)
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Figure 1. Periodic solitary wave solution in 3- and 2-D plots of eq. (7) when β = 3, α = 1,  
σ = 1, b1 = 4, and c = 5
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Figure 3: Periodic bright wave in 3- and 2-D plot of eq. (15) when β = 3, α = 1, σ = 1,  
b1 = 4, and c = 5
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Conclusion

In this paper, we obtain solitary wave solutions of the longitudinal wave equation by 
using the modified Khater method (the modified auxiliary equation method). These solutions 
are novel and different solitary wave solutions of that obtained by using different schemes. 
Moreover, the stability property of solutions is tested by using the properties of the Hamilto-
nian system. The performance of the used technique shows useful and powerful in studying 
many of non-linear PDE. This performance shows its superiority and generalization of the used 
method in this research paper over some previous method. Some sketches are given to explain 
more physical properties of the ionic transport throughout the intracellular environment which 
describes the behavior of many applications in a biological non-linear dispatch line for ionic 
currents.
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