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The implementation of the variation of parameters method  has been demonstrated 
for the flow of a Casson fluid through squeezed parallel plates. Governing PDE has 
been reduced, with the help of similarity transform, to relatively simpler ODE. The 
consequent non-linear equation is complicated enough to have an exact solution. 
We have solved that with the help of variation of parameters method. The results 
are displayed with the help of graphs and are decorated with suitable physical 
explanation.
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Introduction

Squeezing flows between parallel plates is of great importance and are widely used 
in polymer industry, hydromechanical models and many other industrial applications. Many 
researchers have made useful contributions in this field. In this context, the pioneering work has 
been delivered by Stefan [1] in 1874. Reynolds [2] demonstrated the squeezing flow of New-
tonian fluid between parallel elliptic walls, this study can be further examined for rectangular 
channel by Archibald [3]. After this, numerous researchers have made a valuable contribution, 
some of them are highlighted in [4-8].

In literature, a variety of models have been found that captures the complex rheolog-
ical features of most of the non-Newtonian fluids. The model for Cason fluid is among one of 
them, which is suitable for the non-Newtonian fluid-flows like blood flow [9, 10].

In this article, the squeezing flow of an unsteady Casson fluid (non-Newtonian fluid) 
have been considered between parallel plates. The transformed differential equations can be 
further tackled by employing variation of parameters method (VPM) [11-16]. The comparison 
results have shown an excellent agreement. 

Mathematical model 

An incompressible unsteady Casson fluid (non-Newtonian fluid) flow between 
squeezed parallel plates has been under consideration. Casson fluid has been elaborated by the 
following rheological equation:
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where epq is the (p, q)th constituent of the rate of deformation rate. The yield stress for fluid is 
denoted by py while the plastic dynamic viscosity related to the non-Newtonian fluid is indicat-
ed by µB.  The π signifies the product of component of deformation rate. Thus, the mathematical 
equations can be written:
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where the kinematic viscosity is denoted by υ. The p̌ is the pressure, while, 2 /c ypβ µ= πB   rep-
resents the Casson fluid parameter. Furthermore, the associated boundary conditions are defined:
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By excluding the pressure term from eqs. (3) and (4) and by making use of eq. (2), the 
simplified system of equations have been achieved. Thus, introducing ω (the vorticity), we get 
the following equation:
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Now the relevant similarity transforms has been introduced:
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By making use of previous equation into the eq. (7) using (8), the subsequent non-lin-
ear ODE along with associated boundary condition for the flow of Casson fluid has been ob-
tained:
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In previous equations, the dimensionless squeeze number is denoted by S = αl 2/2υ. 
The parting motion of the plates is signified by S > 0, while the squeezing motion is denoted 
by S < 0.

The coefficient for skin friction is elaborated:
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By making use of eq. (9), the dimensionless form for skin friction coefficient:
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Variation of parameters method [11-16]
The following general ODE is considered to elucidate some basics about the VPM:
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In the aforementioned equation, L, X, and N represent the highest order of linear op-
erator, the linear operator of the order less than L, and the non-linear operator, respectively. 
Moreover, g is the source term and f(ξ) is the solution of the differential equation. In the method 
under consideration, we can write the general approximate of the solution:
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In eq. (7), m symbolizes the order of given differential equation. Furthermore, the un-
known constants, Ais, can be determined by using the auxiliary initial or boundary conditions. 
Furthermore, λ(ξ, χ) is the multiplier that reduces the order of integration and it can be deter-
mined by using the classical Wronskian technique. Some of the consequent expressions for the 
multiplier for different values of order are stated: 
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Equations (16) and (17) leads us to an iterative scheme that is given:

( ) ( ) ( ) ( ) ( )
1

1
0 0

, ,  0,1, 2,
!

n
ii

k k k
i

A
f g Nf Xf k

i

ξ

ξ ξ λ ξ χ χ χ χ
−

+
=

 = − − − = … ∑ ∫ (18)

At different levels of iterations, the previous iterative algorithm provides us the solu-
tion of the differential equation with sufficient auxiliary conditions. The terms outside the in-
tegral, provide us with an initial guess that initiates the iterative process. Its presence in all the 
iterations gives us a better approximation.
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Solution procedure 

An nth order differential equation has been taken up to examine this technique: 
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with initial conditionism ym(0) = Cn, m = 0, 1, 2,..., n – 1. Applying VPM, we get:
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where λ is a multiplier [12-14] and can be find optimally. Now, (12) can be re-written:
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where λ(s) is a multiplier [12-14].
Now, taking:
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Results and discussion

In this section, the behavior of radial, A(η), as well as axial, A′(η) velocities, under 
the action of varying values of squeeze number, S, and Casson fluid parameter, β, has been dis-
cussed. For this purpose, figs. 1-8 have been plotted. Figures 1 and 2 has been sketched to see 
the variation in radial, A(η), as well as axial, A′(η), velocities with varying values of squeeze 
number S > 0. It has been observed that the radial velocity decreases as S increases. On the 
other hand, as S increases, the axial velocity depicts a decreasing behavior in the lower half, for  
η ≤ 0.5, however, an opposite behavior has been observed in the upper half, 0.5 < η ≤ 1.0.

The impact of Casson fluid parameter, β, on radial, A(η), and axial, A′(η), velocities, 
when squeeze number S > 0, have been presented in figs. 3 and 4, respectively. One can ob-
serve a decline in the radial velocity as β increases. Moreover, the axial velocity also depicts a 
declining behavior with growing β for η ≤ 0.5,  however, a reversed behavior for A′(η) has been 
perceived in the upper half, 0.5 < η ≤ 1.0.

From fig. 5, one can see an increment in radial velocity, A(η), as the squeeze number, 
S, decreases. Similarly, in the lower half, the axial velocity also depicts an increasing behav-
ior with increasing S, however a decrement has been percieved in the upper half, i. e., for  
0.4 < η ≤ 1.0, see fig. 6. 
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Figure 3. Behavior of A(η), when β  > 0 and S > 0 Figure 4. Behavior of A′(η), when β  > 0 and S > 0 
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The case when squeeze number  
S < 0, the impact of varying values of β 
(Casson fluid parameter) on the radial, 
A(η), and axial, A′(η), velocities are de-
picted in figs. 5 and 6. Almost alike be-
havior has been observed for both A(η) 
and A′(η),  as already been observed in 
figs. 3 and 4, respectively.

Table 1 provides the numerical re-
sults for coefficient of skin friction. It can 
be witnessed that magnitude of skin fric-
tion coefficient decreases as β increases. 
Moreover, by increasing S when  S > 0, 
the magnitude of skin friction decreases, 
however an opposite behavior has been 
observed for S < 0. 

The results for VPM and few previous studies are given in tabs. 2 and 3, for positive 
and negative values of squeeze number. The comparison presented here is showing that our 
results are very encouraging.

Table 2. Comparison of solutions, for  β = 0.8, S = 1 
η RK-F VPM DTM LSM

0.0 0 0 0 0
0.2 0.291426707190 0.291426707854 0.291426745210 0.291426707741
0.4 0.561062238797 0.561062231236 0.561062212358 0.561062238012
0.6 0.786049090612 0.786049090147 0.786049095863 0.786049090879
0.8 0.941540281235 0.941540284589 0.941540201423 0.941540281159
1.0 1 0.999999999998 0.999999999997 1.000000000001

Table 3. Comparison of solutions, for β = 0.8, S = –1 
η RK-F VPM DTM LSM

0.0 0 0 0 0
0.2 0.301742965645 0.301742965852 0.301742961520 0.301742965641
0.4 0.576706786009 0.576706786123 0.576706781254 0.576706786036
0.6 0.799460459089 0.799460459754 0.799460459563 0.799460459095
0.8 0947079362361 0.947079362453 0.947079363657 0.947079362342
1.0 1 0.999999999999 0.999999999997 1.000000000001

Conclusion

In this study, the flow of a Casson fluid between squeezed parallel plates have been 
taken into account. Solutions of the transformed governing model has been found by using vari-
ation of parameters method. Comparison tabs. 2 and 3 reflect the credibility of the technique. 
Graphical aid have been provided to see the effect of various values (positive and negative) of 
squeeze number and Casson fluid parameter on axial as well as radial velocity components. 
The radial velocity decreaes as casson fluid parameter and positive squeezed number increases, 
however, the behavior is quite opposite for negative values of squeezed number.

Table 1. Numerical values for  
coefficient of skin friction

β S
11 (1)A
β 

′
 ′

+


0.4 0.5 –11.1265

– 1.5 –10.72315

– –0.5 –10.26033

– –1.5 –9.723203

0.5 –1.0 –8.25305

0.1 – –32.2773

0.5 1.0 –9.68855

0.1 – –33.7062
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