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A two-component model of reactive liquid chromatography is presented consid-
ering M → N type reaction. The model incorporates surface and pore diffusions 
in the adsorbates, axial dispersion, interfacial mass transfer, first order chemical 
reactions in the liquid and particle phases, and two sets of boundary conditions. 
The model contains a system of four coupled PDE describing the dynamics of 
reactants and products in both phases. The Laplace transformation and eigen-de-
composition technique are jointly applied to solve the model equations analytical-
ly. An efficient and accurate numerical Laplace inversion technique is utilized to 
retrieve back solutions in the original time domain. The developed semi-analytical 
results are verified against the numerical results of a high resolution finite volume 
scheme. A good agreement between the solutions not only confirms the accuracy 
of semi-analytical results but also validates the accuracy of proposed numerical 
scheme. This study extends and generalizes our previous analysis on heteroge-
neous reactions in the liquid chromatography. In order to analyze the behavior of 
a chromatographic reactor, different case studies are presented showing the effects 
of model parameters on the process.
Key words: chromatographic reactor, analytical solutions, linear adsorption, 

liquid and solid phases reactions, mass transfer and reaction kinetics

Introduction

High performance liquid chromatography (HPLC) is a popular chromatographic 
method that is typically designed in accordance to the structure of the stationary and mobile 
phases. This technique, which utilizes different adsorption affinities of the mixture components 
in their separation, identification and quantification, has gained a considerable popularity in the 
field of chemical engineering [1-4]. 

 Amongst the all transport models of chromatography, the general rate model (GRM) 
is viewed as the most far-reaching model [2]. This model incorporates the transport mecha-
nisms like advection, axial dispersion, diffusion through an external film surrounding the sor-
bent particles, and intraparticle diffusion in the stagnant mobile phase within the particle pores 
[1, 2, 5-7]. The model is sufficiently accurate for most of the chromatographic separations.

In the chemical industries, only the chemical reactions characteristically do not pro-
vide the desired results and that separation techniques are always demanded. Therefore, a wide 
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range of practical efforts have been made to combine these two processes into a single appa-
ratus. Such type of apparatus is also used in the reactive chromatography, where both process-
es are merged together in a single chromatographic column [8-11]. The process has not only 
enhanced the conversion of reactants into products but has also produced high purity products 
and, thus, has got attention of several scientists in the past [1, 9]. 

 Homogeneous and heterogeneous catalyzed chemical reactions are available inside 
this integrated process. In a homogeneous reaction, the catalyst is present in the same phase of 
the reactants, i. e. in the liquid phase. Whereas, in the heterogeneous reactions, the sorbent par-
ticles play the role of catalyst for the chemical reaction [8]. In the reactive chromatography, the 
chromatographic column behaves as a reactor itself. The pulses of reactants are periodically in-
jected to the reactor which convert into products. During their propagation through the column, 
products separation occur. If the strongly adsorbed reactant produces weakly adsorbed product 
or weakly adsorbed reactant gives strongly adsorbed product then separated peaks of reactant 
and products can be collected at the reactor exit [2, 5-8]. Types of reactions and orders of eluted 
components have a great impact on the reactive chromatography mechanism. 

Derivation of analytical solutions are possible for linear chromatographic models. 
Such solutions are useful for quantifying the effects of mass transfer and reaction rate coeffi-
cients on the process [2, 5-7]. For diluted systems, these theoretical results are well applicable. 
They can also be utilized to verify the results of numerical schemes, to perform sensitivity 
analysis and to estimate model parameters. 

The present work addresses several aspects of fixed bed two-component liquid chro-
matography, i. e. adsorption equilibria and reaction and separation kinetics. It is an extension 
of our previous work in [7] on reactive chromatography by considering, a part from the solid 
phase reaction, also the liquid phase reaction. Semi-analytical results are calculated for a linear 
two-component reactive general rate model (RGRM) considering both liquid and solid phases 
irreversible reactions. The equations of the model are solved by applying one after another the 
Laplace transformation and eigen-decomposition technique. The solutions are derived for two 
types of boundary conditions (BC), known as Dirichlet and Danckwerts types of BC. The La-
place domain solutions are not invertible analytically in to time domain due to the involvement 
of complicated functions in the solutions. Therefore, a flexible numerical Laplace inversion 
method of Durbin is utilized for this purpose [12]. A HR-FVS is also applied to the same model 
equations for validating the semi-analytical solutions [7, 12]. Furthermore, a few case studies 
are conducted for analyzing the dynamical behavior of the chromatographic reactor. 

The mathematical model of irreversible reaction (M→ N)

During the M→N type of reaction, the component 1 (the reactant M) is converted into 
component 2 (the product N) because of an irreversible reaction of first order in both liquid and 
particle phases. 

The bulk phase equations of RGRM are expressed [2, 7]:
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Here, t stands for the time and the axial co-ordinate is represented by z. The interstitial 
velocity is u, the axial dispersion coefficient, DZ, and the external mass transfer coefficient of 
the ith component is denoted by kext,i. Further, F = (1 – ϵ) / ϵ denotes the phase ratio that depends 
on the total porosity ϵ and µ1 is the rate constant of first order reaction in the liquid phase. 

 The mass balance equations in the particles pores are given [2, 7]:
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Here, the stationary phase local equilibrium concentration is denoted by q*
pm,i, the in-

ternal porosity is expressed by ϵp, the ith component pore and surface diffusivities are denoted 
by Dpm,i and Dsm,i, and n1 is the reaction rate constant in the particle phase.

By using linear adsorption isotherms q*
pm,i = aicpm,i in eq. (2) [2, 7]:
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The following dimensionless variables are used to facilitate our analysis in the next 
section: 
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Here, the column length is denoted by l and the Pectlet number is expressed by sym-
bol Pel. By utilizing the aforementioned dimensionless quantities in eqs. (1) and (3):
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Rephrasing of eq. (7) provides:
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For an empty column at the beginning, the appropriate initial conditions are expressed:
*
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Next, we discuss the BC. Either of the two BC can be used to close the aforemen-
tioned model equations [2, 7].

Type I: Inlet Dirichlet BC

In this case, simple BC are imposed at the column inlet and outlet for eq. (6): 
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paired with 
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Type II: Inlet Danckwerts BC

In this case:
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While at the column outlet:
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The natural boundary condition at ρ* = 0 and ρ* = 1 are assumed for eq. (8):
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Derivation of analytical solution

The model eqs. (6) and (8) are solved analytically by utilizing the following Laplace 
transformation [7]:
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While, the Laplace transformations of eq. (8) gives:
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For i = 1, the aforementioned equation has a following solution:
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and the values of constant K1 and K2 in eq. (16) are evaluated by using the BC given by eq. (12):
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Here, for K1 positive symbol is used and for K2 negative symbol is used. Equations 
(16) and (17) for the value of ρ* = 1 are reduced:
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For i = 2 and using eq. (18), the solution of eq. (15):
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For ρ* = 1, the eqs. (20) and (21) are simplified:
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After introducing eqs. (18) and (22) in eq. (14) the following pair of ODE are ob-
tained:
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where
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In matrix representation, eqs. (25) and (26) are given:
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Here, c ̄mi expresses the Laplace domain concentrations.
The value of [B] in eq. (28) is given:
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The eigenvalues λ*
1 and λ*

2 and the eigenvectors A11 and A22 for the aforementioned 
matrix are expressed: 
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For the sake of simplicity, we have selected A11 and A22 equal to one:
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The linear transformation by using the previous matrix [A] can be written:
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Using aforementioned linear transformation in eq. (28): 
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Equation (33) shows a pair of two ODE whose solutions are represented:
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Here, the values of the constant are derived by using two sets of boundary conditions. 
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Type I: Inlet Dirichlet BC

In the Laplace domain eqs. (10a) and (10b) are represented:
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On utilizing eq. (32), eq. (36) yields:
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On using previous equations, the constants are expressed:
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Thus, eqs. (32), (34), and (35) together with previous equations give:
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Type II: Inlet Danckwerts BC

Equations (11a) and (11b) in the Laplace domain are given:
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Repeating the solution methodology discussed in previous subsection, the Laplace 
domain solutions are represented:
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For small axial dispersion for example D ≤ 10–5 cm2 per minute, the Danckwert bound-
ary conditions simply reduce to the Dirichlet boundary conditions. Inverse Laplace transform 
is not possible analytically due to the involvement of complicated functions in the solutions. 
Therefore, In order to get the aforementioned solutions in the time domain, the numerical La-
place inversion is implemented. An accurate and efficient Fourier series based algorithm is used 
in this work [10]. 

Numerical case studies

In this section, several test problems are conducted for showing the effects of model 
parameters on the process, such as axial Peclet number, Pel, film mass transfer resistance, Bip, 
intraparticle diffusion resistance, ηp, solid phase reaction rate constant, ω1, and liquid phase 
reaction rate constant, η1. The value of standard parameters used in this work are listed in 
tab. 1. 

Table 1. Parameters of linear two-component RGRM, here i = 2 

Parameters L
[cm]

ϵ
 [–]

u
[cmmin–1]

DZ

[cm2min–1]
Deffm,i

[cm2min–1]
tmax

[min]
ci,inj

[gl–1]
a1

[–]
a2

[–]
   ω
[–]

η1

[–]

Values 10 0.4  2.5  0.34  0.0001  50  0.5  2.5  0.5 0.2   0.2

In fig. 1, the concentration of both components (reactant and product) are examined 
by varying the volume of injected sample. A finite width rectangular pulse is injected at the 
inlet of the empty column. The concentration profiles of component 1 and component 2 are 
plotted at the outlet of the column (i. e. at x = 1). In fig. 1(a), when the same quantity of both 
components are used in the injection, more amount of the product is achieved because of the 
irreversibility of reaction. Whereas, in fig. 1(b), the half amount of product is injected (cinj,1 
= 0.25 g/l) as compared to the component 1 (cinj,1 = 0.5 g/l). The conversion of reactant is the 
same but due to the small amount of injected volume of the product, a small height of com-
ponent 2 is observed at the column outlet. Moreover, residence time of component 1 in the 
column is greater due to its larger affinity as compared to component 2 (a1 = 2.5 and a2 = 0.5).  
Good agreement between semi-analytical and numerical solutions are observed in both the 
cases.

Figure 2 gives the plots of elusion profiles for components 1 and 2 by varying solid phase 
reaction rate constant, ω1, and keeping fixed the liquid phase reaction rate, η1 = 0.2. It is noticed 
that product is increasing on increasing the value of solid phase reaction rate constant.
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Figure 1. Effect of the injection volume on the outlet concentration profiles (i. e. at x = 1) obtained by 
Dirichlet BC

Figure 3 explains the different effects 
of Drichlet and Danckwert boundary condi-
tions on the eluted components. The eluted 
components are examined for three values of 
Pel taking ω1  = 0.2 and η1 = 0.2. It is clear 
from the plots that for a small Peclet num-
ber (or larger radial dispersion coefficient), 
the concentration profiles for Dirichlet and 
Danckwert BC are deviating from each other. 
Whereas, for larger Peclet numbers (Pel  =125  
and Pel  = 225) (or for small axial dispersion 
coefficients), the eluted profiles are almost 
identical for both BC. For that reason, the 
more accurate Danckwerts BC are always 
recommended for larger axial dispersion co-
efficients (smaller Peclet numbers) to account 
for the mass loss due to back mixing near the 
column entrance.

Figure 4 depicts the effects of liquid phase reaction rate constant, η1, on the concen-
tration profiles for a fixed value of solid phase reaction rate constant, ω1  = 0.2. Here, we have 
chosen the same parameters given in the tab. 1. Same behaviors of reactant and product are 
observed in this case. 

Figure 5(a) explains the effect of Biot number, Bipm on the concentration profiles. 
Broadened peaks of profiles are observed for Bip = 50, where as Bip = 0.5 has generated steeped 
profiles. Figure 5(b) shows the intraparticle diffusion effect on the profiles. Plots are obtained 
for fixed value of Pel and varying the value of ηp. It is clearly observed that for a slow diffu-
sion rate ηp = 0.02, the residence time inside the column decreases for both the components. 
Whereas, larger value ηp = 20 gives an increased retention time. Moreover, an increase of ηp also 
increases separation of the components. 

Figure 2. Effect of the solid phase reaction rate 
constant ω on the concentration profiles at x = 1  
using Danckwert BC
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Conclusion

A two-component general rate model 
was solved analytically to simulate separation 
and reaction processes inside the chromato-
graphic reactor. The desired semi-analytical 
results were obtained by applying one after 
another the Laplace transformation and the 
eigen decomposition method. The solutions 
were obtained for irreversible reaction and for 
two sets of boundary conditions. An efficient 
and flexible numerical Laplace inversion tech-
nique was used to retrieve back solutions in 
the time domain. The second order HR-FVS 
was used for the comparison of the results [12, 
13]. A good agreement between numerical and 
analytical results verified the accuracy of the 

Figure 3. Effects of the Dirichlet and Danckwert BC on the concentration profiles at x = 1, with  
c1,inj = 0.5 g/l and c2,inj = 0.5 g/l (for color image see journal web site)
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Figure 4. Effect of the liquid phase reaction rate 
constant ηp on the concentration profiles at x = 1  
using Danckwert BC (for color image see journal 
web site)
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Figure 5: Effect of Bip,i and ηp on the concentration profiles for Danckwert BC
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numerical scheme and the correctness of derived analytical results. Selected parametric studies 
for liquid and solid phase reaction rate constants, intraparticle diffusion resistance, film mass 
transfer resistance and axial dispersion were performed. It was found that conversion of the 
reactants into product increases on increasing the reaction rates in both phases. The derived 
analytical results are useful tools for further improvements in the performance of chromato-
graphic reactors. 

Nomenclature
ai 	 – Henry’s constant for component i, [–]
ci,inj 	 – injected concentration, [gl–1] 
cmi 	 – liquid concentration in the bulk, [gl–1]
cpm,i 	 – liquid concentration in the pores, [gl–1]
Deefm,i 	– effective dispersion coefficient, [cm2min–1]
Dpm,i 	 – pore diffusivity coefficient, [cm2min–1] 
Dsm,i 	 – surface diffusivity coefficient, [cm2min–1]
DZ 	 – axial dispersion coefficient, [cm2min–1] 
q*

pm,i 	 – solid phase concentration, [gl–1]
r 	 – particle radial co-ordinate, [min]

t   	 – time co-ordinate, [min]
u 	 – intersticial phase velocity, [cmmin–1]
tinj 	 – time of injection, [–]
tmax 	 – total simulation time, [min]

Greek symbols

ϵ	 – total porosity, [–]
η1 	 – liquid phase reaction rate, [–]
ω 	 – solid phase reaction rate, [–]
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