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The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, 
velocity slip, thermal radiation, and Brownian motion have been analyzed. By 
employing the similarity transformation, the ODE are obtained from the fluidic 
system PDE. The transformed ODE are handled for the numerical solution of the 
proposed fluidic problem by incorporating shooting technique. To compare the ob-
tained numerical results, Lobatto 111A method has been implemented, with 5-8 
decimal places of accuracy. The numerical data for the fluidic parameters of inter-
est are demonstrated in the tabular form, further few proficient parameters effects 
like magnetic parameter, Lewis number, stretching rate parameter, the thermal ra-
diation parameter and Prandtl number on velocity, temperature and concentration 
profiles have been exhibited numerically as well as graphically. By enhancing the 
velocity slip parameter, increment is examined in temperature and concentration 
profiles while opposite behavior is recorded in the velocity profile. Both the con-
centration and temperature profiles decline with the increase in the Stretching rate 
ratio parameter. 
Key-words: Casson fluid, stretched sheet, velocity slip, reduced Nusselt number, 

Sherwood number 

Introduction

The rheology of non-Newtonian fluids possess diverse application in industrial sci-
ences and bioengineering particularly petroleum products, geophysics, clay coating, and poly-
mer processing [1-3]. The rhelogy of non-Newtonian Casson fluid has gathered much signif-
icance in scientific and engineering areas. Human blood flow can be described using Casson 
fluid because of the chain construction, the blood cells and the ingredients namely protein, rou-
leaux and fibrinogen, etc. Reddy [4] examined thermal radiation effects for unsteady flow of a 
non-Newtonian fluid through a stretched sheet. The steady convection flow of a non-Newtonian  
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fluid under the effect of uniform temperature was reported by Khalid et al. [5]. Akbar [6] used 
the magnetic effects on peristaltic non-Newtonian nanofluid-flow in the existence of crude-oil 
refinement. Megahed [7] reported the impact of slip condition for Casson nanofluid based on 
thin film flow and reported that the parameter of velocity slip reduces the thickness of the flow 
of thin film. Ibrahim and Makinde [8] discovered the hydromagnetic Casson-nanofluid-flow 
through a stagnation point and analyzed that increase in the slip parameter, thicknesses of ther-
mal boundary-layers is increased.

In many investigations, fluid-flows are studied by establishing the no-slip at the bound-
aries, but in some circumstances like foam, suspensions, and emulsions, the no-slip condition at 
the wall cannot be considered. Nowadays, the phenomenon of slip flow has been extensively in-
vestigated by the researchers working on the studies of micro-electro-mechanical systems relat-
ed to the personification of temperature jump and velocity slip. The nanofluid dynamics for a iso-
thermal stretching sheet with the effects of transpiration by using the homotopy analysis method 
is implemented by Rashidi et al. [9]. The MHD flow of nanofluid past through a stretched sur-
face by implementing partial slip effects and convective boundary has been studied by Rahimi 
and Freidoonimehr [10]. Tian et al. [11] in order to enhance numerical simulation technique 
for the case super critical pressure fluids, developed a technique by using variant Prandtl num-
ber model. Esfe et al. [12] with the aid of experimental investigation explored the rheology of  
TiO2-MWCNT hybrid nanofluid. Esfe et al. [13] in another research paper applied various 
artificial intelligence methods to forecast the viscosity of TiO2/SAE 50 nanolubricants with 
power-law models. Babar and Ali [14] discussed the behavior of hybrid nanofluids with a 
precise debate on histology, thermophysical properties, synthesis methodologies, future para-
digms, current status, and some other salient features. Asadi et al. [15] presented the develop-
ment in the formation techniques and thermophysical axioms, dimensions of oil-based nano-
fluids and they showed that by adding nanoparticles in a thermal oil, cooling and lubrication 
productivities could be enhanced. Ilyas et al. [16] emphasized on the rheology of nanoflu-
ids and they used MWCNT to normalize thermal oil and observed high equilibrium. Esfe,  
et al. [17] capitalized modified non-influenced Sorting Genetic Algorithm to minimize the vis-
cosity and enhance the thermal ability of Al2O3-water/EG (20-80) nanofluids. Manasrah, et al. 
[18] focused on the formation of material based on nanoparticles. Almanassra et al. [19] carried 
out investigation in order to compare the impact of various surfactants on the constancy and 
thermo-physical axioms of nanotubes carbon.

Nesligul et al. [20] determined the solution for the position of moving boundary, they 
modeled the problem using variable space grid method and applied finite element method. 
Solution for non-linear ODE of non-isothermal fluid transport along with the mass transfer is 
determined by Kilicman et al. [21] by employing homotopy perturbation method. The present 
work is the numerical treatment for Casson nanofluidic model and the key findings of current 
investigation can be interpreted in terms of salient features as:
––  A mathematical model for 3-D flow of Casson nanofluid over a stretching sheet with chem-

ical reactions, velocity slip, thermal radiation and Brownian motion has been modeled. 
–– The similarity transformation are exploited to transform the mathematical model in terms of 

system of ODE and numerical treatment for the dynamics are investigated by the well-es-
tablished strength of shooting technique. 

–– Worth of the scheme is endorsed by comparison of results in favorable agreement with state 
of the art numerical solvers. 

–– The dynamics of system model is evaluated for reduced Nusselt number, Sherwood number 
and other proficient parameteric effects for description of the behavior. 
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Mathematical description  
of the problem

A 3-D incompressible Casson fluid-
ic problem on the boundary-layer region 
using heat transfer and thermal radiation 
effects is modeled in this section. The 
domain z > 0 occupies the flow and sheet 
has fixed origin and is stretched in two di-
rections. The uwx = ax and vwy = by are the 
respective velocities along the axial and 
transverse directions. The geometry of the 
model problem is revealed in fig. 1. The u, 
v, and w are the velocity components are 
taken in x-, y-, and z-directions. The Tf and 
T∞ represent the surface and ambient temperatures. Furthermore, Cw and C∞ represent nanopar-
ticles concentration and the ambient concentration of the problem, respectively. The governing 
equations are given:
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Figure 1. Geometric description of the problem
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The modeled eqs. (1)-(5) along with the boundary conditions (6) take the following 
dimensionless form by using the similarity transformation:
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where the magnetic parameter is represented
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Solution methodology

In this section, a comprehensive description of the numerical procedure used for the 
solution of the governing, non-linear, non-dimensional eqs. (8)-(11) with respect to boundary 
conditions (12) has been presented. These dimensionless equations of motions are handled with 
well known shooting numerical technique. For comparison, the same system of equations are also 
solved with the help of well known differential equations solver bvp4c. The domain [0, ηmax] is 
considered for the proposed problem. The value of the ηmax has been chosen as eight throughout 
the article. To get first order ODE system, the notations y1 for f, y4 for g, y7 for θ, and y9 for ϕ are  
used. The system of equations for the proposed methodology is presented: 
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where s, p, u, and w are the missing conditions in the initial phase and the stopping criteria for 
the proposed fluidic problem is considered:

( ) ( ) ( ) ( ){ }3 max 6 max 7 max 10 maxmax , , ,y y y yη η η η ξ< (11)

where ξ > 0 is a small positive number. 
An analogy of the presently computed results of f ″(0) and g″(0) corresponding to the 

stretching ratio parameter, λ, and magnetic parameter, M, with those of Hayat et al. [22] and 
Freidoonimehr et al. [23] is reflected in tab. 1. The obtained results in tab. 1 are in favorable 
agreement with the earlier published numerical results. 
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Table 1. Correlative analysis of present outcomes and with the investigations of  
Hayat et al. [22] and Freidoonimehr et al. [23] for f ″(0) and g″(0) when γ = Bi = 0 

  [22] [23] Present [22] [23] Present 
λ  M  – f″(0)  – f″(0) – f″(0)  – g″(0)  – g″(0)  – g″(0)

 0  1  1  1  0  0  0 
 1  1.414214  1.414213  1.407219  0  0  0 

0.5  0  1.093095  1.093095  1.088232  0.465205  0.465205  0.463325 
 1  1.476771  1.476770  1.469457  0.679809  0.679809  0.676445 

0.1 0  1.173722  1.173721  1.168172  1.173722  1.173721  1.168172 
 1  –  1.535710  1.528099  –  1.535710  1.528099 

Results and discussions

Table 2 shows the heat transfer rate rises by enhancing the value of M, the physical 
parameters Nb, Nt, Le, and Bi while quite different behavior is noted for Nr, the Prandtl number, 
the chemical reaction parameter, χ, and the stretching rate parameter, λ. However by enhancing 
the M, the Nb and Le decreases while opposite trend is noticed for the parameters Nr, Pr, Nt, χ, 
the stretching rate parameter, λ, and the Biot number.

The magnetic parameter effects for both velocity modules (f ′, g′), temperature, θ, and 
concentration profiles, ϕ, are shown in figs. 2-5. A drag force known as Lorentz force found to 
inflict the parameter M for electric conduction. This force is the propensity to slows down the 
speed of the flowing fluid. Decrements in the velocity profiles are noticed by increasing the mag-
netic parameter along x- and y-directions. The magnetic parameter is dependent of the Lorentz 
force as previously mentioned, which works as a proxy in the flow resistance. It is seen that by 
enhancing the value M, enhancement is noticed in the Lorentz force and as a result, decrement 
is seen in both the velocity profiles. Furthermore, by enhancing the value of M, increased in the 
boundary-layer thickness, the concentration profile and thickness of species boundary-layer is 
recorded. Which clearly reveals that the parameter of magnetic field in the transverse direction 
clashes with phenomena of transportation. This is significant remark that the huge hurdles in the 
flow of fluid particles cause heat generation, as a result increment is seen when magnetic field 
increases. Figure 6 highlighted the parameter Nt impact against the temperature gradient distri-
bution. By increasing the value value of Nt , the molecules are shifted from hot to cooler sur-
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Figure 2. Variants of M for f ′ Figure 3. Variants of M for g′
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face, as a result an enhancement is recorded in the boundary-layer thickness region that leads to 
rise the temperature profile. The graphical impact of the Lewis number on the concentration of 
fluid particles is reflected in fig. 7. The Lewis number shows the relation between influence of 
the rate of thermal and species diffusions in the region along the boundary-layer. To increase the 
Lewis number, the boundary-layer region involving species are crippled and the temperature 
profile gets elevated. The velocity slip parameter, γ, effects on the velocity and concentration 
profiles are illustrated graphically in figs. 8-11. The velocity slip simulation are expressed in eq. 
(12) that lies between [0, 1]. Presently when γ = 0, it means it does not obey no-slip condition 
traditionally. It is recorded that if magnitude of the fluid velocity components is decreased, then 

Table 2. Results of the Nusselt and Sherwood number for several parameters.

 NuxRex
–1/2     ShxRex

–1/2

M  Nr  Pr  Nb Nt  Le  χ  λ  Bi Shooting  bvp4c  Shooting  bvp4c

0.1  0.1  1  0.1  0.1  0.1  0.1  0.1  1  0.56630  0.56630  0.09801  0.09801 
0.5          0.57657  0.57657  0.09078  0.09078 

         0.58809  0.58809  0.08162  0.08162 
0.5          0.59842  0.59842  0.07264  0.07264 

 0.3         0.50168  0.50168  0.17344  0.17344 
 0.5         0.45877  0.45877  0.22346  0.22346 
 0.7         0.42720  0.42720  0.26035  0.26035 

  1.5        0.50427  0.50427  0.17046  0.17046 
  2        0.46169  0.46169  0.22012  0.22012 
  2.5        0.42977  0.42977  0.25742  0.25742 
   0.08       0.56492  0.56492  0.18140  0.18140 
   0.06       0.56354  0.56354  0.32037  0.32037 
   0.04       0.56217  0.56217  0.59830  0.59830 
    0.3      0.57342  0.57342  0.72386  0.72386 
    0.5      0.58083  0.58083  1.31462  1.31462 
    0.7      0.58854  0.58854  1.86815  1.86815 
     0.2     0.56725  0.56725  0.06801  0.06801 
     0.3     0.56829  0.56829  0.03236  0.03236 
     0.4     0.56939  0.56939  -0.00767  -0.00767 
      0.3    0.56542  0.56542  0.14356  0.14356 
      0.5    0.56447  0.56447  0.19275  0.19275 
      0.7    0.56341  0.56341  0.24621  0.24621 
       0.4   0.53208  0.53208  0.12732  0.12732 
       0.7   0.50633  0.50633  0.14789  0.14789 
       1   0.48560  0.48560  0.16340  0.16340 
        1.5  0.66254  0.66254  0.15212  0.15212 
        2  0.72389  0.72389  0.18642  0.18642 
        2.5  0.76639  0.76639  0.21011  0.21011 
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an enhancement is noticed in the temperature and concentration profiles. Moreover, by consid-
ering the lesser flow amount and pressed in different directions of the velocity, through this way 
the slip factor gets solider. However, to increase the velocity slip factor, reduction is noticed 
through the boundary-level flow in the both axial and transverse directions. Due to this datum, 
the momentum boundary-layer region thickness is reduced, which results the flow to gets slow 
down. Similar results are achieved for concentration profile using slip conditions. Stretching rate 
ratio parameter, λ, effects on temperature distribution and concentration profile are exhibited in  
figs. 12 and 13. By the definition of the parameter λ = 0, which signifies the non-bidirection-
al stretching layer cases. Generally, when the λ exceeds from zero level, the lateral surface 
transport in the y-direction co-ordinate. Additionally, to enhance the values of the parameter 
of stretching ratio will reduce the expansion of the region in thermal boundary-layer, which 
results cooling of the regime, as a result decrement is noticed in the concentration profile and 
the expansion of region of the species in the boundary-layer.

Fig 12 Fig 13
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	       Figure 12. Variants of λ for θ 			   Figure 13. Variants of λ for ϕ 

Conclusions

In this study, 3-D flow of Casson nanofluid over a stretched sheet with chemical reac-
tions, velocity slip, thermal radiation and Brownian motion have been analyzed. With the aid 
of similarity parameters, the system of non-linear PDE are transformed into ODE, which are 
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solved by using shooting method. The numerical outcomes are matched with already estab-
lished results in the existing literature which show validity of the proposed scheme. The results 
of present investigated can be summarized as.

yy The velocity profiles decreases by enhancing the M and opposite effects have been noticed 
for temperature profile as well as concentration profile profiles. 

yy It is observed that by increasing the Nt, the temperature profile decline, on other hand with 
the increasing value of Lewis number, the concentration profile also decreases.

yy By accelerating the velocity slip parameter effects, γ, increment is noticed in temperature 
and concentration profile while velocity profile decreases.

yy Both the concentration and temperature profiles decline with the increase in the stretching 
rate ratio parameter, λ. 

In future, one may explore in stochastic numerical techniques [24-26] to study the 
dynamics of presented Casson Nanofludic model. 

Nomenclature
B0 	 – constant magnetic field 	  
Bi 	 – Biot number
C 	 – nanoparticle concentration
Cf 	 – non-dimensional friction coefficient 
Cfx 	 – skin friction coefficient
Cp 	 – specific heat 
Cw 	 – nanoparticle concentration at the wall
C∞ 	 – concentration at free stream
D 	 – Brownian diffusion coefficient 
DB 	 – mass diffusivity 
DT 	 – thermophoretic diffusion coefficient 
f(η), g(η) – velocity similarity functions
K0 	 – chemical reaction coefficient 
k 	 – thermal conductivity
Le 	 – Lewis number	  	  
M 	 – magnetic parameter
Nb 	 – Brownian motion parameter
Nr 	 – radiation parameter 	
Nt 	 – thermophoresis parameter 	  
Nux 	 – local Nusselt number	 
Pr 	 – Prandtl number 

Q 	 – heat generation/absorption factor
Q0 	 – heat generation coefficients
R 	 – auxiliary function 	  
Re 	 – Reynolds number
Shx 	 – Sherwood number 
T 	 – temperature 	  
Tf 	 – convective surface temperature 
T∞ 	 – ambient temperature 	 
u, v, w – velocity components 
x, y, z 	– rectangular co-ordinates 	  

Greek symbols

α 	 – thermal diffusivity
β 	 – Casson fluid factor
γ 	 – velocity slip parameter 
γ0 	 – length of slip 
χ 	 – chemical reaction factor 	  	  
ε 	 – total squared residual error 
σ 	 – electrical conductivity 	  
λ 	 – stretching rate ratio parameter 
ρ 	 – fluid density 
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