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Exact general solutions for hydromagnetic flows of an incompressible viscous flu-
id between two horizontal infinite parallel plates are established when the upper 
plate is fixed and the inferior one applies a time-dependent shear stress to the 
fluid. Porous effects are taken into consideration and the problem in discussion 
is completely solved for moderate values of the Hartman number. It is found that 
the fluid velocity and the non-trivial shear stress satisfy PDE of the same form 
and the motion characteristics do not depend of magnetic and porous parameters 
independently but only by a combination of them that is called the effective perme-
ability. For illustration, as well as to bring to light some physical insight of results 
that have been obtained, three special cases are considered and the influence of 
Reynolds number as well as combined porous and magnetic effects on the fluid 
motion are graphically underlined and discussed for motions due to constant or 
ramped-type shear stresses on the boundary. The starting solutions corresponding 
to motions induced by the lower plate that applies constant or oscillatory shear 
stresses to the fluid are presented as sum of steady-state and transient solutions 
and the required time to reach the steady-state is graphically determined. This time 
is greater for motions due to sine as compared to cosine oscillating shear stresses 
on the boundary. The steady-state is rather obtained in the presence of a magnetic 
field or porous medium.
Key words: viscous fluid, parallel plates, general solutions,  

mixed boundary value problem

Introduction

 The fluid-flow between parallel plates is a classical fluid mechanics problem having 
many applications like polymer processing, power transmission equipment, transient loading 
of mechanical components and many others. It can be generated, for instance, by one of plates 
that is moving in its plane or applies a shear stress to the fluid. The first exact solutions corre-
sponding to the motions between two horizontal parallel plates induced by the upper plate that 
is moving in its plane, more exactly for the plane Couette flow between parallel plates, seem 
to be those of Schlichting [1] and Sinha and Choudhary [2] without, respectively with suction. 
Other interesting solutions for the same motions of incompressible viscous fluids have been 
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established by Rajagopal [3] and Erdogan [4]. An extension of the previous solutions has been 
provided by Mendiburu et al. [5] when a constant or time-dependent pressure gradient is taken 
into consideration.

 Unsteady hydromagnetic Couette flows between parallel plates have been extensively 
studied due to their multiple applications such as geothermal systems, MHD generators, poly-
mer technology, petroleum industry, nuclear reactors, etc. The interaction between the electrical 
conducting fluid and the magnetic field induces effects with important applications in physics, 
chemistry, engineering, horticulture and hydrology. Exact solutions for the MHD Couette flow 
of viscous fluids between two infinite parallel plates have been obtained by Singh and Okwoyo 
[6]. The influence of a periodic pressure gradient on the unsteady MHD flow has been early ob-
tained by Singh and Ram [7] and recently, Kiema et al. [8] found exact solutions for the steady 
MHD Couette flow between parallel plates using Sumudu transform. A numerical study of the 
unsteady MHD flow with magnetic field lines fixed relative to the moving upper plate has been 
presented by Onyango et al. [9].

 In the same time, flows of incompressible viscous fluids through porous media have 
received an increasing attention due to their practical applications in geophysical and astro-
physical studies, agricultural engineering, petroleum industries and oil reservoir technology. A 
numerical study of the fluid motion through horizontal channels of porous media has been pre-
sented by Al-Hadhrami [10]. The influence of porous medium on the unsteady MHD Couette 
flow of incompressible viscous fluids between two infinite parallel plates could be also brought 
to light, for instance, from the results of Kesavaiah et al. [11], Venkateswarlu et al. [12], Das 
and Ojha [13] and a part of their references. Unfortunately, a two parameter approach that is 
used in their graphical representations regarding the effects of magnetic and porous parameters 
is superfluous or even misleading [14, 15].

 Furthermore, in previousmentioned papers as well as in many others from the liter-
ature are solved motion problems with velocity on the boundary although in many practical 
problems the shear stress is given on the boundary [16]. Actually, in Newtonian mechanics 
force is the cause and kinematics is the effect [17] and the no slip condition may not be appli-
cable for flows of polymeric fluids which can slide on the boundary. Consequently, boundary 
conditions on stresses are significant and Renardy [18] showed how well-posed boundary value 
problems can be formulated. Unsteady MHD natural-convection boundary-layer flow of a vis-
cous, incompressible, and electrically conducting dusty fluid past an impulsively moving verti-
cal plate with ramped temperature in the presence of thermal radiation and transverse magnetic 
field was studied by Nandkeolyar et al. [19]. Prakash et al. [20] studied the combined effects 
of thermal radiation, buoyancy force and magnetic field on oscillatory flow of a conducting 
optically thin dusty fluid through a vertical channel filled with a saturated porous medium. Das 
et al. [21, 22] investigated the fully developed mixed convective flow in a vertical channel 
filled with nanofluids ian the presence of thermal radiation and transverse magnetic field. The 
transient natural-convection in a vertical channel filled with nanofluids was studied by Das  
et al. [23] and thermal radiation was taken into consideration. To the best of our knowledge, 
exact solutions for mixed boundary value problems corresponding to unsteady MHD flows 
between horizontal parallel plates do no exist or are rare in the existing literature.

 The main purpose of this note is to provide general solutions for the unsteady MHD 
flow of an incompressible viscous fluid between two infinite horizontal parallel plates when the 
upper plate is fixed and the lower one applies a time-dependent shear stress to the fluid. For 
completion, the porous effects are taken into consideration and it is found that the fluid velocity 
and the corresponding non-trivial shear stress satisfy partial differential equations of the same 
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form and the motion characteristics do not depend on magnetic and porous effects independent-
ly but only by a combination of them that is called the effective permeability. Consequently, a 
two parameter approach as usually used in the literature is superfluous or even misleading. In 
order to bring to light some physical insight of results which have been obtained, three special 
cases with engineering applications are considered and combined magnetic and porous effects 
on the motions due to constant or ramp-type shear stresses on the boundary are graphically 
depicted and discussed. The starting solutions are presented as sum of steady-state (permanent) 
and transient components, and the required time to reach the steady-state is graphically deter-
mined. 

Statement of the problem

Let us consider an electrically conduct-
ing incompressible viscous fluid at rest between 
two infinite horizontal parallel plates in the 
presence of a porous medium and of a uniform 
magnetic field of strength, B, acting normal to 
the plates as shown in fig. 1. At the moment  
t = 0+ the inferior plate applies a time-depen-
dent shear stress –Sf(t) to the fluid. Here, S is a 
constant shear stress, the dimensionless func-
tion f (⋅) is piecewise continuous and f(0) = 0. 
Due to the shear the fluid is gradually moved 
and its velocity has the form [3, 4]:

= ( , ) = [ ( , ),0,0]v v y t v y t (1)
in a suitable Cartesian co-ordinate system x, y, and z. For such motions, the continuity equation 
is identically satisfied. 

We also assume there is no surplus electric charge distribution present in the fluid 
and Hall effects are not significant due to the moderate values of Hartman number. In these 
conditions, the constitutive equation of incompressible viscous fluids and the motion equations 
reduce to the relevant partial differential equations: 

2( , ) ( , ) ( , )( , ) = , = ( , ) ( , )v y t v y t y ty t B v y t v y t
y t y k

τ µτ µ ρ σ∂ ∂ ∂
− −

∂ ∂ ∂
(2)

where τ(y, t) is the non-trivial shear stress, ρ and µ are the density, respectively the viscosity 
of the fluid, σ – the electrically conductivity, and k – the permeability of porous medium. The 
corresponding initial and boundary conditions:

( ,0) = 0, ( ,0) = 0, 0v y y y hτ ≤ ≤ (3)

=0

( , )(0, ) = = ( ), ( , ) = 0, 0
y

v y tt Sf t v h t t
y

τ µ ∂
− ≥

∂ (4)

where h is the distance between plates. In order to determine solutions which are independent 
of the flow geometry, we use the next non-dimensional variables and functions:

* * * * * * *= , = , = , = , ( ) =y Sy t t v v f t f t
h hS S S

µ τ µτ
µ

 
 
 

(5)
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Figure 1. Flow geometry
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Introducing eq. (5) in eqs. (2)-(4) and dropping out the star notation we obtain the 
following dimensionless initial and boundary value problem:

eff
( , ) ( , ) ( , )( , ) = , Re = ( , )v y t v y t y ty t K v y t

y t y
ττ ∂ ∂ ∂

−
∂ ∂ ∂

(6)

( ,0) = 0, ( ,0) = 0, 0 1v y y yτ ≤ ≤ (7)

=0

( , ) = ( ), (1, ) = 0, 0
y

v y t f t v t t
y

∂
− ≥

∂ (8)

where Re = Vh/n is the Reynolds number, V = Sh/µ – the characteristic velocity, Keff = M + 1/K – the 
called the effective permeability [24] while:

2
2

2= and =B kM h K
h

σ
µ

(9)

are the non-dimensional magnetic and porous parameters. Eliminating ( , )y tτ  or ( , )v y t  be-
tween eqs. (6), we get the governing equations:

2 2

eff eff2 2

( , ) ( , ) ( , ) ( , )Re = ( , ) or Re = ( , )v y t v y t y t y tK v y t K y t
t ty y

τ τ τ∂ ∂ ∂ ∂
− −

∂ ∂∂ ∂
(10)

for the fluid velocity, respectively the corresponding shear stress τ(y, t). Equations (10) clearly 
show that the fluid velocity v(y, t) and the adequate shear stress τ(y, t), as well as in the case of 
unidirectional motions on an infinite plate [25, 26], satisfy PDE which are identical as form. 
This result, which is also true in the dimensional case, is of a fundamental importance. It allow 
us, for instance, to get exact solutions for motions generated by the two parallel plates that ap-
plies shear stresses to the fluid if the solutions corresponding to motions due to the plates which 
are moving in their planes are known. As an example, we consider the flow of incompressible 
viscous fluids between two infinite horizontal parallel plates that applies the same constant 
shear stress, S, to the fluid in the absence of magnetic and porous effects. Assuming again that 
the whole system is at rest at the moment t = 0 and bearing in mind the dimensional form of eq. 
(10-2) and the result of Erdogan [4] from eq. (12), it results that the distribution of the dimen-
sional shear stress in the flow domain of this motion is given by the equality:

2 2

2
=0

4 ( 1) (2 1) (2 1)( , ) = 1 cos exp , , 0
2 1 2 4

n

n

n ny t S y t h y h t
n h h

τ ν
∞  − + π + π  − − − ≤ ≤ ≥   π +     
∑

if 2h is the distance between plates and the origin of the co-ordinate system is at the middle of 
the distance between them. The corresponding velocity field:

2 2

2 2 2
=0

8 ( 1) (2 1) (2 1)( , ) = sin 1 exp , , 0
2(2 1) 4

n

n

Sh n nv y t y t h y h t
hn h

ν
µ

∞   − + π + π   − − − ≤ ≤ ≥   π +     
∑

is immediately obtained substituting the expression of the shear stress in eq. (2) in which porous 
and magnetic effects are neglected. Direct computations clearly show that, with the view to 
the identity (A1) from Appendix, the governing equations and all imposed initial and bound-
ary conditions are satisfied. Furthermore, coming back to our initial problem, eq. (10) clearly 
shows that the fluid velocity as well as the shear stress do not depend on the parameters M and 
K independently, but only by a combination of them that is called the effective permeability. 
Consequently, the study of MHD flows of incompressible viscous fluids in such motions with/
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without porous effects is exactly the same problem and a two parameter approach is superfluous 
or even misleading. More exactly, this problem admits the same solution for an infinite set of 
values of parameters M and K which correspond to the same value of the effective permeability 
Keff. In the following, the partial differential eq. (10-1) together with the conditions (7-1) and (8) 
will be solved using the finite Fourier cosine transform. 

Solution of the problem

 Multiplying eq. (10-1) by cos(µny), where µn = (2n + 1)π/2, integrating the result with 
respect to y from zero to one and using the identity:

1 2
2

2
0 =0

( , ) ( , )cos( )d = ( ) ( 1) (1, )n
n n Fn n

y

v y t v y ty y v t v t
yy

µ µ µ∂ ∂
− − + −

∂∂∫ (11)

and the initial and boundary conditions (7-1) and (8), we find:
2

effd ( ) ( )( ) = , > 0
d Re Re
Fn n

Fn
v t K f tv t t

t
µ +

+ (12)

where the finite Fourier cosine transform:
1

0

( ) = ( , ) cos( )dFn nv t v y t y yµ∫ (13)

of v(y, t) has to satisfy the condition:

(0) = 0, = 0,1, 2,3...Fnv n (14)

Solving the ODE eq. (12) with the initial condition (14) and applying the inverse 
Fourier cosine transform, see eq. (A2) from Appendix, we find for the dimensionless velocity 
field the expression:

2
eff

=0 0

2( , ) = cos( ) ( ) exp d
Re Re

t
n

n
n

K
v y t y f t s s s

µ
µ

∞  +
− − 

 
∑ ∫ (15)

or equivalently:
2

eff
2 2

=0 =0eff eff 0

cos( ) cos( )
( , ) = 2 ( ) 2 ( )exp d

Re

t
n n n

n nn n

y y K
v y t f t f t s s s

K K
µ µ µ

µ µ

∞ ∞  +′− − − + +  
∑ ∑ ∫ (16)

The solutions (15) and (16) clearly satisfy the initial and boundary conditions (7-1) 
and (8-2). However, under these forms, the boundary condition (8-1) seems to be unsatisfied. In 
order to avoid this drawback, we use eq. (A3) from Appendix and write v(y, t) in the equivalent 
but suitable form: 

eff 2 2
=0 eff

2
n eff

2
=0 eff 0

cos( )
( , ) = (1 ) ( ) 2 ( )

( )

cos( ) +
2 ( )exp d

Re

n

n n n

t
n

n n

y
v y t y f t K f t

K

y K
f t s s s

K

µ
µ µ

µ µ
µ

∞

∞

− − −
+

 
′− − − +  

∑

∑ ∫ (17)

which clearly satisfies all imposed initial and boundary conditions. The corresponding non-triv-
ial shear stress τ(y, t) can be immediately obtained introducing anyone of eqs. (15)-(17) in  
(6-1). Making M = 0 or K → ∞ into aforementioned relations, the solution corresponding to the 
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motion through a porous medium, respectively the solution corresponding to the MHD flow is 
obtained. In the absence of magnetic and porous effects eq. (17), for instance, reduces:

2

2
=0 0

cos( )
( , ) = (1 ) ( ) 2 ( ) exp d

Re

t
n n

n n

y
v y t y f t f t s s s

µ µ
µ

∞  
′− − − − 

 
∑ ∫ (18)

The dimensionless frictional force τ(t) per unit area exerted by the fluid on the station-
ary plate, as it results from eqs. (6-1) and (17), is given:

eff 2
=0 eff=1

2
eff

2 0
=0 eff

( , ) ( 1)( ) = = ( ) 2 ( )
( )

( 1)
2 ( )exp d

Re

n

s
n n ny

n tn n

n n

v y tt f t K f t
y K

K
f t s s s

K

τ
µ µ

µ µ
µ

∞

∞

∂ −
− + +

∂ +

 − +′+ − − +  

∑

∑ ∫ (19)

while the volume flux Q(t) per unit width of a plane normal to the flow:
1

eff 3 2
=0 eff0

2
ef

2
=0 eff 0

( ) ( 1)( ) = ( , )d = 2 ( )
2 ( )

( 1)2 ( )exp d
Re( )

n

n n n

tn
n f

n n n

f tQ t v y t y K f t
K

K
f t s s s

K

µ µ

µ
µ µ

∞

∞

−
− −

+

 +− ′− − −  +  

∑∫

∑ ∫ (20)

Finally, it is worth pointing out the fact that the obtained expressions for the velocity 
field v(y, t) can generate exact solutions for any motion with technical relevance of this type. 
Consequently, the problem in discussion is completely solved. For illustration, as well as to 
bring to light some physical insight of results that have been obtained, three special cases with 
engineering applications will be here considered. 

f(t) = H(t) (Constant shear stress on the boundary)

By substituting f(t) by H(t) (the Heaviside unit step function) in anyone of eqs. (15)-(18), 
we get the velocity field corresponding to the motion induced by the lower plate that applies a 
constant shear stress to the fluid. eqs. (17) and (18), for instance, take the simplified forms, see 
also the property (A4), from Appendix:

2
eff

eff 2 2 2
=0 =0eff eff

cos( ) cos( )
( , ) = 1 2 2 exp

Re( )
n n n

n nn n n

y y K
v y t y K t

K K
µ µ µ

µ µ µ

∞ ∞  +
− − − − + +  

∑ ∑ (21)

2

2
=0

cos( )
( , ) = 1 2 exp

Re
n n

n n

y
v y t y t

µ µ
µ

∞  
− − − 

 
∑ (22)

whose steady (permanent) components:

eff 2 2
=0 eff

cos( )
( ) = 1 2 and ( ) = 1

( )
n

p p
n n n

y
v y y K v y y

K
µ

µ µ

∞

− − −
+∑ (23)

The shear stress distribution in the flow domain is immediately obtained introducing 
anyone of previous relations in eq. (6-1). Equations (19) and (20) also take the simpler forms:

2
eff

eff 2 2
=0 =0eff eff

( 1)( 1)( ) = 1 2 2 exp
Re( )

nn
n n

s
n nn n n

K
t K t

K K
µ µ

τ
µ µ µ

∞ ∞  − +−
− + + − + +  

∑ ∑ (24)
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2
ef

eff 3 2 2
=0 =0eff ef

1 ( 1) ( 1)( ) = 2 2 exp
2 Re( ) ( )

n n
n f

n nn n n n f

K
Q t K t

K K
µ

µ µ µ µ

∞ ∞  +− −
− − −  + +  

∑ ∑ (25)

which tend to the asymptotic solutions:

eff eff2 3 2
=0 =0eff eff

( 1) 1 ( 1)= ( ) = 1 2 , = ( ) = 2
2( ) ( )

n n

sp s p
n nn n n n

K Q Q K
K K

τ τ
µ µ µ µ

∞ ∞− −
∞ − + ∞ −

+ +∑ ∑ (26)

when t tends to infinity. The fluid velocity v(y, t), as well as the frictional force τs(t) and the vol-
ume flux Q(t), given by eqs. (21), (24), and (25), as it was to be expected, are zero at the initial 
moment t = 0, see eqs. (A3) and (A5) from Appendix. Direct computations easy show that the 
steady component vp(y) and the asymptotic shear stress τs(∞) given by eqs. (23-1) and (26-1) 
can be written in the equivalent forms:

( ) ( )eff eff eff

sinh (1 )1 1( ) = , =
cosh cosh

eff

p sp

y K
v y

K K K
τ

 −  − (27)

which in the absence of magnetic and porous effects (when Keff → 0) reduce:
( ) = 1 , = 1p spv y y τ− − (28)

For validation, the equivalence of eqs. (27-1) and (27-2) with eq. (23-1), respectively, 
(26-1) is proved by fig. 2.

f(t) = tH(t) (Ramp-type shear stress on the boundary)

The velocity field corresponding to the motion induced by the inferior plate that ap-
plies a ramp-type shear stress [27] to the fluid, as it results from eqs. (17) and (18) are given:

2
eff

eff 2 2 2 2
=0 =0eff eff

cos( ) cos( )
( , ) = (1 ) 2 2Re 1 exp

Re( ) ( )
n n n

n nn n n

y y K
v y t y t tK t

K K
µ µ µ

µ µ µ

∞ ∞   +
− − − − −  + +    

∑ ∑ (29)

respectively
2

4
=0

cos( )
( , ) = (1 ) 2 1 expn n

n n

y
v y t y t Re t

Re
µ µ
µ

∞   
− − − −  

   
∑ (30)
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Figure 2. Profiles of the velocity vp(y) given by eqs. (23-1) and (27-1) against y and the shear  
stress τsp given by eqs. (26-1) and (27-2) as a function of Keff
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This motion is unsteady and remains unsteady and similar solutions with ramp-type 
shear stress on the boundary are obtained in [21], eqs. (28) and (29) . The frictional force on the 
stationary plate and the volume flux, as it results from eqs. (19) and (20):

2
eff

eef 2 2 2
0 =0eff eff

( 1)( 1)( ) = 2 2Re 1 exp
Re( ) ( )

nn
n n

s
n nn n n

K
t t tK t

K K
µ µ

τ
µ µ µ

∞ ∞

=

  − +−
− + + − −  + +    

∑ ∑ (31)

2
eff

eff 3 2 2 2
=0 =0eff eff

( 1) ( 1)( ) = 2 2Re 1 exp
2 Re( ) ( )

n n
n

n nn n n n

KtQ t tK t
K K

µ
µ µ µ µ

∞ ∞   +− −
− − − −  + +    

∑ ∑ (32)

Denoting by v0(y, t), τ0(y, t), and v1(y, t), τ1(y, t), the dimensionless velocity and shear 
stress fields corresponding to the two problems (with constant, respectively ramp-type shear 
stress on the boundary), it is easy to observe:

1 0 1 0
0 0

( , ) = ( , )d , ( , ) = ( , )d
t t

v y t v y s s y t y s sτ τ∫ ∫ (33)

Furthermore, it is not difficult to show:
11 2

11 2

0 1 2
0 0 0 0

0 1 2
0 0 0 0

( , ) = ( !) ... ( , )d d ...d

( , ) = ( !) ... ( , )d d ...d

n

n

ss st

n n n

ss st

n n n

v y t n u y s s s s

y t n y s s s sτ τ

−

−

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
(34)

where vn(y, t), τn(y, t) are the dimensionless velocity and shear stress fields corresponding to 
motions due to the lower plate that applies shear stresses of the form tnH(t) to the fluid. 

f(t) = H(t) cos(ωt) or H(t) sin(ωt)  
(Oscillatory shear stresses on the boundary)

Replacing f(t) by H(t)cos(ωt) or H(t)sin(ωt) in eq. (17) and bearing in mind the prop-
erty (A4) regarding the Dirac delta function δ(⋅), we find for the velocity field the expressions:

eff 2 2 2
=0 =0ef eff

2 2
ef ef

2
=0 eff 0

cos( ) cos( )
( , ) = (1 )cos( ) 2 cos( ) 2

( )
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exp 2 sin( )exp ( ) d

Re Re
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c

n nn n f n

t
n f n fn

n n
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K Ky
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K

µ µ
ω ω
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µ µµ
ω ω
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∞ ∞

∞
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+ +

   + +
⋅ − + − −     +     

∑ ∑

∑ ∫ (35)

respectively

eff 2 2
=0 eff

2
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2
=0 eff 0

cos( )
( , ) = (1 )sin( ) 2 sin( )

( )
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2 cos( )exp ( ) d
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t
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y
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ω ω
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∞
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∑
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Evaluating the integrals from eqs. (35) and (36), the starting solutions vc(y, t) and  vs(y, t) can be written as sums of steady-state (permanent) and transient solutions:

( , ) = ( , ) ( , ), ( , ) = ( , ) ( , )c cp ct s sp stv y t v y t v y t v y t v y t v y t+ + (37)
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where 
2 2 2 2 2
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 Direct computations show that the steady-state components vcp(y,t) and vsp(y,t) of 
vc(y,t) and vs(y,t) can be presented in the simple but equivalents forms:

s [ (1 )] s [ (1 )]( , ) = Re e , ( , ) = e
c ( ) c ( )

i t i t
cp sp

h y h yv y t v y t Im
h h

ω ωβ β
β β β β

   − −
   
   

(42)

where

  eff= Rei Kβ ω +

Re and Im represent the real, respectively, the imaginary part of that which follows and i is the 
imaginary unit. Indeed, the equivalence of the corresponding steady-state solutions given by 
eqs. (38) and (42-1), respectively, (40) and (42-2) is graphically proved by figs. 2 and 3.

Figure 3. Profiles of the velocities vcp(y, t) and vsp(y, t) given by eqs. (38) and (42-1), respectively,  
(40) and (42-2) for for Re = 70, Keff = 3, ω = 2, and different values of the time
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Thermal transport

For the problem formulated in section Statement of the problem , the energy equation 
can be written [28, 29]:

22

2=p
T T uc k
t yy

ρ µ
 ∂ ∂ ∂

+  ∂ ∂∂  
(43)

where cp is the specific heat, T(y, t) – the fluid temperature, k – the thermal conductivity of fluid. 
The second term on the right side is the viscous dissipation term; it is the cause of a temperature 
rise in the flow. Along with eq. (43), we consider the following initial and boundary conditions:

1 1 1 1( ,0) = , (0, ) = , ( , ) = , 0T y T T t T T h t T T ≠ (44)
Using the non-dimensional variables (5) and transformation:

1

1

T T
T

θ
−

= (45)

Equations (43) and (44) become (neglecting the star notations):
22

2Pe = Br v
t yy
θ θ  ∂ ∂ ∂

+  ∂ ∂∂  
(46)

( ,0) = 0, (0, ) = 0, ( , ) = 1y t h tθ θ θ (47)
where Pe = Re, Pe is the Peclet number, Pr = n/α – the Prandtl number, α = k/ρcp – the thermal 
diffusivity, and Br = µV2/kT1 – the Brinkman number we denote by w(y, t) the function:

2

( , ) = Br vw y t
y

 ∂
 ∂ 

(48)
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Applying the Laplace transformation eq. (46) and using the initial condition (47-1) 
we obtain:

2

2

( , ) = Pe ( , ) ( , )y s s y s w y s
y

θ θ∂
−

∂
(50)

where

 
( , ) = ( , ) dsty s y t e tχ χ

∞

∫
denotes the Laplace transform of the function χ(y, t). Function θ ̄(y, s) has to satisfy conditions:

(0, ) = 0, (1, ) = 0s sθ θ (51)

Using the finite sine Fourier transforms:
1

0

( , ) = ( , )sin( )dk s y s k y yθ θ π∫ (52)

into eq. (50) we obtain the transformed temperature:

2 2

1( , ) = ( , )
Pe

k s w k s
s k

θ
+ π



 (53)
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where
21 1

0 0

( , )( , ) = ( , )sin( )d = Br sin( )dv y tw k t w y t k y y k y y
y

 ∂
π π ∂ 

∫ ∫ (54)

Applying the inverse Laplace and Fourier transform we obtained the temperature 
field:

( )2 2

=1 =1 0

1 Pe( , ) = 2 ( , )sin( ) = 2 sin( ) e ( , )d
Pe

k
t

k k

t
y t k t k y k y w k

σ
θ θ σ σ

−∞ ∞
π −

π π∑ ∑ ∫



(55)

Numerical results and conclusions

 The hydromagnetic-flow problem of incompressible viscous fluids between two hor-
izontal infinite parallel plates is analytically studied when the upper plate is stationary and the 
lower plate applies an arbitrary shear stress to the fluid. Exact expressions for the velocity field 
v(y, t), the frictional force exerted by the fluid on the stationary plate τs(t) and the volume flux 
Q(t) per unit width of a plane normal to the flow are obtained when porous effects are taken 
into consideration. It is worth pointing out the fact these characteristic entities do not depend of 
the magnetic and porous parameters M and K independently but only by a combination of them  
Keff = M + 1/K which is called the effective permeability. As a result, the investigation of the hy-
dromagnetic-flow of incompressible viscous fluids in such motions with/without porous effects 
is exactly the same problem and a two parameter approach is superfluous or even misleading. 

For illustration, as well as to bring to light some physical insight of results that have 
been obtained, three special classes of motions with engineering applications are considered 
and the influence of Reynolds number, as well as the combined porous and magnetic effects on 
the fluid-flow, is graphically underlined in figs. 4-6 for motions due to constant or ramp-type 
shear stresses on the boundary. The starting solutions corresponding to motions induced by the 
lower plate that applies constant or oscillatory shear stresses to the fluid are written as sums of 
steady-state and transient solutions. In order to be sure of their correctness, in both cases, the 
steady-state solutions are presented in two different forms whose equivalence is graphically 
proved by figs. 2 and 3. The required time to reach the steady-state for motions induced by 
constant or oscillatory shear stresses on the boundary is graphically determined in figs. 7-10. 

Figure 4. Profiles of the velocities v(y, t) given by eqs. (21) and (29) for Re = 70, Keff = 3, and different 
values of the time t
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This is the time after which the diagrams of starting solutions tend to superpose over those of 
the corresponding steady-state solutions. In practice, this time is important for those who want 
to eliminate the transients from their experiments. 

In figs. 4-6, for comparison, the profiles of the dimensionless velocity v(y, t) cor-
responding to motions induced by the lower plate that applies constant or ramp-type shear 
stresses to the fluid are presented for different values of the time, t, Reynolds number, and the 
effective permeability, Keff. In all cases, the fluid velocity smoothly decreases from maximum 
values on the moving plate to the zero value on the stationary plate. It is an increasing function 
with respect to time and decreases for increasing values of Reynolds number or Keff. As it was 
to be expected, the fluid velocity is appreciably greater for fluid motions due to the ramp-type 
shear stress on the boundary.

From fig. 6 it also results that the fluid velocity decreases in the presence of a mag-
netic field or of the porous medium because these graphical representations are also valid for  
M = 1, 2 or 3 in the absence of porous medium or for K = 1, 1/2 or 1/3 in the absence of the 
magnetic field. Consequently, the fluid velocity decreases for increasing values of M and in-
creases for increasing values of K. However, such a conclusion is not quite opportune since the 
same graphical representations correspond to an infinite set of parameter values M and K that 
corresponds to the same effective permeability Keff.

Figure 5. Profiles of the velocities v(y, t) given by eqs. (21) and (29) for t = 2, Keff = 3,  
and different values of the of the Reynolds number

Figure 6. Profiles of the velocities v(y, t) given by eqs. (21) and (29) for t = 2, Re = 70,  
and different values of the of the Keff
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The flow due to the lower plate that applies a constant shear to the fluid becomes 
steady or permanent and the required time to reach the steady-state for such a motion is graph-
ically determined in figs. 7 and 8 for two values of Reynolds number and three values of Keff. 
This is the time after which the diagrams of the starting solution (21) are almost identical to 
those of steady-state solution (23). As it results from these figures, it is a decreasing function 
with respect to Keff and increases for increasing values of Reynolds number. Consequently, the 
steady-state is rather obtained in the presence of porous medium or a magnetic field.

The required time to reach the steady-
state for motions induced by cosine or sine os-
cillating shear stresses on the boundary is deter-
mined in figs. 9 and 10 for three values of the 
Reynolds number and two of Keff. As before, it 
is a decreasing function with respect to Keff and 
increases with regard to Reynolds number. In 
addition, it is greater for motions produced by 
sine oscillations as compared to cosine oscilla-
tions of the shear stress on the boundary. This is 
obvious since for such motions the shear stress 
on the boundary is zero at time t = 0. 

In fig. 10, unlike fig. 9, the diagrams of 
starting solutions are separately presented at dif-
ferent times because the profiles of steady-state 
solutions are almost identical for Keff = 1 or 3.

Figures 11 and 12 have been sketched to show the variation of the non-dimensional 
fluid temperature in the channel. To plot these graphs we used the following values of non-di-
mensional parameters. Profiles of the temperature in fig. 11 are plotted for the Brinkman num-
ber and for three different values of the time, t. It is observed from this figure that values of 
temperature increase from the value zero on the bottom wall to a maximum values attained 
near the moving wall and decreases to zero on the upper wall. This behavior is in accordance 
with the velocity field which has big variation near the moving wall of the channel therefore, 
the dissipation effects are stronger. It is known that the viscous dissipation produces heat due to 
the drag between fluid particles and it increases the fluid temperature. The bigger fluid velocity 

Figure 8. Required time to reach  
the steady-state for motion due to a constant 
shear on the boundary for Re = 70 and different 
values of the effective permeability Keff 

Figure 7. Required time to reach the steady-state for motion due to a constant shear  
on the boundary for Keff = 3 and two values of the Reynolds number
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will generate bigger drag between fluid particles and consequently larger viscous heating of the 
fluid. The influence of the Brinkman number on the fluid temperature is shown in fig. 12. As 
expected, the fluid temperature increases with the Brinkman number because, at larger values 
of Brinkman number, the heat produced by the viscous dissipation increases and hence the fluid 
temperature increases.
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Figure 9. Required time to reach the steady-state for motions induced by cosine or sine oscillations  
of the shear on the boundary for Keff = 3, ω = 2, and different values of Reynolds number

Figure 10. Required time to reach the steady-state for motions induced by cosine or  
sine oscillations of the shear on the boundary for Re = 70, ω = 2, and two values of Keff 
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Conclusions

The main results that have been obtained by means of this study.
 y Exact solutions are established for the motion of incompressible viscous fluids between 

two horizontal infinite parallel plates when the inferior plate applies a time-dependent shear 
stress to the fluid and porous and magnetic effects are taken into consideration. 

 y Governing equations for velocity and shear stress in such motions are identical as form. 
 y Motion characteristics do not depend of the magnetic and porosity parameters M and K in-

dependently but only by a combination of them Keff = M + 1/K which was called the effective 
permeability. A two parameter approach is redundant or even misleading. 

 y Velocity and shear stress fields vn(y, t) and τn(y, t) associated to motions induced by ramp-
type shear stresses tnH(t)on the boundary are presented as simple or multiple integrals of 
v0(y, t) and τn(y, t) corresponding to motions due to a constant shear on the boundary. 

 y The fluid-flows slower in the presence of a magnetic field or porous medium. 
 y Required time to reach the steady-state is an increasing function with respect to the Reyn-

olds number and decreases for increasing values of Keff. Consequently, the steady-state is 
rather obtained in the presence of a magnetic field or porous medium. 

 y The required to reach the steady-state is higher for motions induced by the lower plate that 
applies sine as compared to cosine oscillating shear stresses to the fluid. This is obvious 
since in the case of these motions the shear stress on the boundary is zero at time t = 0. 

 y The temperature field has a maximum value near the moving wall where the velocity varia-
tions are bigger, so the viscous dissipation effects are stronger. 
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Figure 11. Profiles of the non-dimensional 
temperature θ(y, t) for different values of  
the time, t 

Figure 12. Profiles of the non-dimensional 
temperature θ(y, t) for different values of the 
Brinkman number 
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0

( ) = ( ) (the Dirac delta function) and ( ) ( )d = ( )
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