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Reasonable capacity configurations of distributed energy system are issues which 
need to be discussed. Determinate design without considering variations in ener-
gy load and energy prices can result in non-achievement of project targets during 
its service life. Therefore, a design method that takes into account uncertain fac-
tors takes precedence over other methods. In this paper, a three-stage optimiza-
tion method is proposed to provide theoretical guidance on the optimization of 
combined cooling, heating, and power system configurations. The first two stages 
link the optimization of the operation strategy and equipment capacities simulta-
neously under current load and energy prices. The Monte-Carlo simulation is 
applied in the third stage to fully consider the effects of various possible scenari-
os, and the Tabu search algorithm was introduced for system optimization. The 
comprehensive benefits include energy consumption, economy, and emission lev-
el. These were taken into consideration in the objective function. Moreover, a de-
tailed design process was presented to illustrate the application of the proposed 
method. In conclusion, the proposed method is not only suitable for the design of 
combined cooling, heating, and power system, but could easily extend to other 
energy system easily. 

Key words: uncertainty analysis, combined cooling, heating, and power system, 
three-stage optimization method, information entropy, planning 

Introduction 

Uncertainty modeling and research in distributed energy systems (DES) has drawn a 
fair share of attention in recent years. The energy input, transformation, output, their relation-
ship with each other, and the uncertainty of each part in the energy hub need to be further 
studied in the modeling process.  

Economic considerations determine the ability of the DES to survive. However, it is 
difficult to provide a more precise estimation of the uncertainty in the actual operation during 
the design stage. At present, there are many kinds of programing models, but the chosen value 
of each uncertain parameter in the algorithm is usually on the basis of experience, which is the 
main reason that results in the actual economy deviate from the expected. In addition to the 
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uncertainty of renewable energy output and energy demand, it is imperative to make a more 
comprehensive consideration of energy carrier price uncertainty during the design stage. 

The type of system known as combined cooling, heating, and power (CCHP) systems 
have become preferred in many different scenarios because of their qualities of being efficient 
and flexible, and their advantages of being clean and reliable. Because of the limitations to the 
possible configurations for such a system, it is difficult to balance the heating/cooling and 
power load demands on such a system when considering the applications independently. In or-
der to optimize the CCHP system, Mancarella et al. [1] modeled a CCHP system with a com-
bined gas-fired boiler and electric chiller by considering the real-time management of demand 
while the economy was optimized under the load demand for the different seasons. The energy 
migration analysis was also done for different energy shifting strategies. Li et al. [2] took eco-
nomic, environmental, and energy saving rates as the different optimization objectives, and 
compared the configurations under different energy loads of the residential and office build-
ings. The comprehensive performance of office buildings was found to be superior due to the 
use of air conditioners and energy storage devices. Ren et al. [3] analyzed the performances of 
a solar energy system combined with fuel, cells in a DES in Japan with the goal of performing 
environmental, economic, and sensitivity analyses to optimize these parameters considering the 
effects of the carbon tax. Wu et al. [4] compared the economic, environmental, and energy sav-
ing rates of a CCHP system integrated with an auxiliary gas-fired boiler under five typical cli-
mates and four different types of buildings in Japan. Wang et al. [5, 6] analyzed the sensitivity 
of the gas and electricity prices on the systems’ operation strategy. 

The equipment capacity must be identified at the design stage, and the mode of op-
eration should lead to an economic optimum. In the stage after the sensitivity analysis re-
search, a multitude of uncertainties were taken into consideration for the design of the DES 
[7], including the instability of the renewable energy output caused by ambient conditions and 
the fluctuation of energy demand. Pang and O’Neill [8] optimized the configurations and con-
trol parameters of the gas-fired domestic hot water supply systems in commercial buildings by 
applying uncertainty and sensitivity analysis. The insufficient gas supply incident was also 
considered as the result of an uncertainty factor in the district energy system integrated with 
combined heat and power and wind power [9]. In addition, the flexible-stochastic program-
ming method was a mature algorithm developed to reveal the effects of municipal uncertainty 
in energy planning [10, 11].  

The uncertainties inherent in these systems need to be considered in the design stage 
to maintain the profitability of the projects in their operational lifetimes, while conventional 
systems design methodologies considering operational strategy treat energy demand as a de-
terministic series. In this paper, a methodology for DES design under uncertainty parameters 
is investigated. The methodology includes the modeling of optimal DES design, load model-
ing, definition of the probability distributions of the uncertain parameters, and uncertainty 
analysis using Monte-Carlo simulations (MSC). Finally, the system configurations of the DES 
need to be improved to accommodate the uncertainty in future operations.  

Methodology for uncertainty investigation 

The CCHP system model 

A typical CCHP system assisted by a gas boiler and an electric chiller is shown in 
fig. 1. The electricity, heating and cooling energy flows are represented in green, red, and 
blue, respectively. In this section, a detailed model of the proposed optimization method 
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will be introduced. The typical CCHP system running under the strategy of determining 
power generation by heat. A separate system is introduced as a comparison scheme to pro-
vide the basis for CCHP system optimization. In the separate system, the electricity, heating 
and cooling energy is supplied by the grid, a gas-fired boiler, and an electrical chiller. A 
detailed model of the system is presented in Appendix A.1 supplementary material. As a 
case study for this paper, the design of a CCHP system for an office building with an area 
of 14400 m2, is investigated. The purpose of our design is to meet the energy requirements 
of buildings, including power, heating and cooling load, under various conditions. 

 
Figure 1. The structure of a typical CCHP system and a separate system; PGU – power generation 
unit, HRS – heat recovery system 

Energy load 

A detailed model of the energy load is presented in Appendix A.2 supplementary 
material. 

Quantification of uncertainty 

Energy carrier prices 

In the traditional deterministic design, the usual values of natural gas prices are the 
current prices at the design stage. However, they are not static throughout the life cycle. The 
economic cost/benefit outcome of the project is largely determined by the energy carrier pric-
es, which vary according to import prices, exploitation technology, government policy, and 
even the international energy markets and are difficult to predict accurately at the design 
stage. Thus, it is reasonable to treat natural gas prices as uncertain parameters in the design. A 
uniform distribution, U (= 2-3.5) [12] was considered. 

Considering the time-of-use grid electricity price, not only would the prices change 
with the access of renewable power to the grid, so would the peaks and valleys of the periods 
of the renewable energy use. With the increase of renewable energy production, the real-time 
electricity price could be a critical measure of demand response in electricity markets. In this 
paper, a stochastic increase or decrease was added to current electricity prices. A uniform dis-
tribution, U (= 0.3-0.5) was considered. 

Emission factors 

The emission factor of natural gas is regarded as a constant value due to negligible 
variations in the fuel’s carbon content. However, the emission factor of grid electricity incorpo-
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rates the purchase cost from the grid under a carbon tax, as well as the feed-in tariff, and thus, 
influences the economics of the project. However, the emission factor of grid electricity is fore-
cast to decrease because of the increasing use of RES to supply the grid. Nevertheless, the rate 
of descent is currently not determined. Hence, the emission factor of grid electricity needs to be 
treated as an uncertain parameter in the design stage. Based on the different ways of accounting 
for carbon emissions and the differences in the main power supply in different areas, the emis-
sion factors of grid electricity can vary greatly. Thus, to characterize the uncertainty of the 
emission factors of grid electricity, a uniform distribution, U (= 0.478-1.0416) kgCO2/kWh was 
defined as the current range of emission factors according to the emission factors of grid all 
around China. An uncertain rate of descent was defined as an additional term to the current fac-
tors due to increasing use of RES, and the range of rate of descent is U (= 0-2%). 

Meteorological parameters 

For a specific region, the monthly mean temperature radiation remain at a relatively 
stable level, while the hourly meteorological parameters may change with the appearance of 
extremely cold or warm seasons. Therefore, the probability distribution models of meteoro-
logical parameters were established, generating random meteorological parameters according 
to the monthly mean data. The N [a, b] is a normal distribution with mean value, a, and stand-
ard deviation, b. The probability distribution models of ambient temperature and radiation are 
shown in tab. 1.  

Table 1. The probability distribution models of ambient temperature and radiation 

The hourly meteorological parameters were generated by adding random values onto 
the base values. The base values of the hourly meteorological parameters were exported from 
building load simulation software in the DeST [13]. The random hourly data was generated 
according to a normal distribution whose mean values are the differences of the base values 
and random values of monthly mean meteorological parameters, having a standard deviation 
of 0.5. The hourly meteorological parameters are no longer a set of certain values, but a range 
of possible values. 

Indoor environmental parameters 

Indoor set temperature: In the load simulation, the indoor set temperature is usually 
set at 26 oC in cooling season, and 20 oC in heating season. The indoor temperatures often de-
viate from the design temperatures due to personnel preferences in the actual operation, which 
causes the cooling or heating load to rise and fall. Therefore, the indoor set temperature was 
considered as following a triangular probability distribution, T [a, b, c], with lower limit a, 
upper limit c, and the likeliest value b. 

Staff indoor rate: The staff indoor rate indicates the presence of people inside the 
room and number of people. The range of the staff indoor rate is [0,1], with the upper limit indi-
cating that the room is at full capacity and the lower limit indicating that the room is empty. The 
lower the staff indoor rate, the lower is the load. A triangular probability distribution was used 

Uncertainty values Base values Distributions Notes 

Monthly mean ambient temperature  to_monthly to_monthly +N [0,2] [14] 

Monthly mean daily horizontal radiation  Go_monthly Go_monthly +N [0,0.8] [14] 
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to demonstrate the uncertainty of the staff indoor rate. The number of persons in the room 
should be equal to the maximum number it is designed to hold to maximize the staff indoor rate. 

Ventilation rate: This indicates the ratio of actual ventilation quantity to design val-
ue. Adjusting the ventilation time significantly influences the heating and cooling load and it 
is an uncertain parameter. Here, the ventilation rate is set as 1 and the ventilation quantity is 
set according to the national standard. It is described as a normal distribution with the parame-
ters N [0,0.5]. 

Equipment demand coefficient influences power load and cooling load. The value 
was 0.9 in the certain parameter design. Other cases use the distribution N [0,0.5] to generate 
a random number to create a new equipment demand coefficient. The probability distributions 
of indoor environmental parameters are summarized in tab. 2. 

Table 2. Probability distributions of indoor environmental parameters 

Optimization method 

In the optimization, the configurations of a DES are relevant to the system operation 
strategies. The output of a CCHP system must match the load instantaneously and the opera-
tion strategies greatly affect the running configurations throughout the year. However, once 
the configurations are identified, the strategies will be restricted to optimizing the perfor-
mance of the equipment relative to its capacity. In this paper, a three-stage optimization 
method considering uncertainty was proposed to optimize the operation strategy and capaci-
ties simultaneously. The flow of the three-stage optimization method is shown in fig. 2. 

The first stage is to optimize the operation strategy. From an operating perspective, 
if heat-to-electric ratio deviates from the performance curve, the cogeneration will produce 
large amounts of excess heat/power, or there will be a need to supply certain amounts of 
heat/power irrespective of whether the following electric load and following thermal load 
strategies are used. Thus, the optimization target is to find a point with minimal excess energy 
while simultaneously achieving maximal benefits for energy consumption, economy and 
emission levels. The partial-load ratio of the GPU and the output of the facilities are chosen as 
the independent variables in this stage of optimization.  
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For each moment, the comprehensive performance of the CCHP system including 
the operation cost saving rate, the primary energy saving rate and the carbon reduction rate 
could be expressed: 

Uncertainty parameters Base value Possibility distribution 

Indoor set temperature 
ti_heating = 20 °C ti_heating + T[18,20,24] 

ti_cooling = 26 °C ti_cooling + T[22,26,28] 

Staff indoor rate ρ = 0.8 
T[0.5,0.8,1] (workday) 

T[0.1,0.2,0.3] (weekend) 

ventilation rate Φ = 1 Φ + N [0,0.5] 

Equipment demand coefficient W = 0.9 W + N [0,0.5] 
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Figure 2. Three-stage optimization methods of CCHP system by considering uncertainty 

The second stage is to optimize the configurations that aim to maximize the compre-
hensive benefits of the DES in its service life. Therefore, the independent variable of the de-
sign optimization stage is the capacity of each device. As described in the operation strategy 
optimization, the energy, economic, and emission reduction benefits of the system are also 
taken into consideration and the multi-objective decision-making method is adopted to seek 
the optimal configurations of the system. The objective function of system design optimiza-
tion is: 

 1 2 3

1 2 3

max ( , 1,2,..., )

1

jM N j k
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The optimization method of DES proposed in this paper organically links the opera-
tion strategy and configurations optimization. Using the optimal configurations achieved in 
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the second stage, the MCS is applied in the third stage to fully consider the possibilities of 
various scenarios. The objective of the MCS is to obtain the results under various sets of con-
ditions and attach a probability that the system will achieve certain levels of performance 
[15, 16]. A detailed discussion of MCS and its application to DES is shown in [14, 17]. The 
failure probability is proposed to describe the degree of deviation from the design points. In 
this stage, the probability distributions of the uncertainties are the input parameters in each 
simulation and the results differ for each set of conditions. The optimization objective is: 

 max [ ( , ) ( )],optP M N Us M Nj j  (6) 

where M(Nj) refers to the comprehensive benefit of the determinate design during the first two 
stages, Nj,opt is the final optimal configurations, and M(Nj,opt, Us) refers to the comprehensive 
benefit of the final optimal configurations under uncertainty in each simulation in the MCS. 
The optimization objective is that the feasible probability reaches its maximum value. We 
consider the result of one simulation as a failure if the M(Nj,opt,Us) < M(Nj). In this paper, 
1000 MCS were conducted.  

Case study 

Energy demand 

A high-tech industrial zone consisting mainly of office buildings in Tianjin, China 
was taken as a planning case. The heating, cooling, and power load characteristics are shown 
in fig. 3. By considering the uncertainties of the energy demand, the hourly heating, cooling, 
and power loads are not a series of determinate parameters but ranges in a probability space. 
The heating season runs from November 15 to March 15, and the cooling season runs from 
June 1 to September 31. There is no heating or cooling load at other times of the year. The 
power load does not fluctuate significantly all year round, but is relatively lower on weekends 
because of the low staff indoor rate.  

 

Figure 3. Heating, cooling and power load under uncertainty;  
(a) heating and cooling load and (b) power load  

Determinate design 

The determinate design involves the first two-stages in the three-stage design meth-
od. For the purposes of engineering applications, the capacity of a facility is usually a multiple 
of 10 kW. In addition, minimizing the initial investment required for the system was a con 
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straint added at this stage, with the intention to offset the fact that creating a larger capacity 
CCHP results in a higher comprehensive benefit. The optimal configuration results in the 
GPU at 1000 kW, AHP at 980 kW, EC at 0 kW, and GB at 0 kW. The comprehensive per-
formance of the CCHP is 0.14. With this configuration, the results illustrated that the GPU 
and AHP could meet the determinate (without uncertainty applied) heating and cooling load 
without the assisted EC and GB under the current energy prices. Insufficient electricity was 
supplied from power grid. Conventional design stops here, so it could not be confirmed 
whether the built-up CCHP system could realize the comprehensive benefit when the load and 
energy prices vary. In the next section, the design configurations will be improved to adapt to 
the uncertainty. 

Sensitivity analysis  

The results of MCS were divided into the failure group and the feasible group. The feasi-
ble group includes simulations wherein the comprehensive performance of the CCHP is better 
than the design value. Information entropy was applied to identify which factor had the most 
remarkable influence on the comprehensive performance of the CCHP. Refer to the detailed 
discussions about the information entropy in the sensitivity analysis for further discussion [18]. 
The information entropy of each uncertain parameter was shown in fig. 4. According to the re-
sults, the price of natural gas, cgas, is the most influential factor. The effect of the feed-in tariff, 
csale, and the price of electricity purchased from the grid, cpeak, cvalley, and cflat, are essentially 
the same because of the linear association between them. The differences among the electricity 
use peak, flat, and valley price, cpeak, cvalley, and cflat, are not significant because there is no con-
sideration of heat storage. By contrast, the ambient temperature variations, Δtwinter, Δtsummer, 
show less influence because of the good load regulation abilities of the CCHP. 

Design improvement 

The probability density function (PDF) according to the results of MCS was illustrated in 
fig. 5. The probability that the comprehensive benefits are higher than 0.14 is 54.7%, which 
means that there is a 45.3% chance that the economy of the project is failing to live up to ex-
pectations under these uncertainty considerations. The optimization objective of this stage is 
to maximize the feasible zone, which also indicates the design configurations have strong 
adaptability.  

  
Figure 4. The information entropy of each 

uncertainty parameter 

Figure 5. Distribution of comprehensive benefits 

according to MCS 
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The natural gas price is the most influential factor; hence, the capacities of GPU first 
need to be resized on the basis of the sensitivity analysis. The Tabu search (TS) algorithm 
[19] was applied to optimize the configurations. In order to avoid the calculation results fall-
ing into local optimal, the TS is a optimization algorithm that guides a local heuristic search to 
explore the solution space beyond local optimum. The interval of the optimization is listed in 
tab. 3. The results of the third stage optimization give the GPU at 800 kW, AHP at 840 kW, 
EC at 240 kW, and GB at 80 kW. The probability that the comprehensive benefits are higher 
than the 0.14 is 87.2%, and the failure probability drops down to 12.8%. 

Table 3. The optimization interval of the equipment 

 
Before the three-stage optimization method was proposed, a global search using 

MCS was operated, which consumed a great deal of computing resources and time. One thou-
sand samples were selected in the MCS. As the number of samples increases, the computing 
time required increases exponentially. In order to facilitate solving it under uncertain condi-
tions, the first two stages could be regarded as the preprocessing methods of variable optimi-
zation.  

The sets of optimization intervals of the equipment in the third stage concern both 
the results of determinate design and the maximum of the energy demand. According to mul-
tiple trials, the final optimization result is close to the determinate design result. Thus, the op-
timization intervals could be shortened to improve the search rate.  

Results and discussion 

Table 4 lists the comparison of the two-stage and three-stage design configurations. 
Compared to the results of the two-stage design, the capacity of GPU decreases and the ca-
pacities of EC and GB increase using the three-stage design. The capacity of AHP depends on 
the capacity of GPU. Because the effects of the fluctuation of the gas price are larger than that 
of buying electricity from the grid, decreasing the capacity of GPU protects against the risk of 
higher gas prices. The objective of increasing the capacities of EC and GB is to meet the cool-
ing and heating load requirements and to make up for the lack of GPU. In addition, the initial 
investments of EC and GB are lower than that of GPU system.  

Table 4. Comparison of the configurations between two-stage design and three-stage design  

Equipment Units Optimization interval 

GPU kWe [0, 2000] 

AHP kWh Depend on GPU 

EC kWe [0,700] 

GB kWh [0, 500] 

Configurations Two-stage design  Three-stage design 

GPU 1000 [kWe] 800 [kWe] 

AHP 980 [kWh] 840 [kWh] 

EC 0 [kWe] 240 [kWe] 

GB 0 [kWh] 80 [kWh] 
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In order to illustrate the improvement of the 
three-stage design in comparison to the two-
stage design, the uncertainty of the output per-
formances with variable parameters to simulate 
real conditions was reflected in the results shown 
in fig. 6. The comprehensive benefits gained 
from the results of the three-stage design are 
drastically improved compared to the two-stage 
design. While this improvement does not mean 
that it is advantageous under all conditions, it 
could ensure that the design indices are met un-
der most conditions. The two-stage design meth-
od is just an optimization of the design under a 
single working condition, but it could not by it-
self satisfy a situation where the operating pa-
rameters deviate from the design conditions.  

Conclusions 

At present, the configurations of DES are designed according to the deterministical-
ly derived energy demand and current energy prices, which always leads to the operations in 
practice deviating from the design. In order to maintain highly competitive performance 
throughout the service life of the system, the uncertain parameters need to be considered in 
the design stage. In this paper, a three-stage optimization method for CCHP design under un-
certain energy demand and energy prices was proposed. The first two stages tightly link the 
optimization of system design and operation strategies, and the third stage uses MCS to take 
into account the influences of uncertain parameters. 

A CCHP system design case was conducted to exhibit the flow of the three-stage de-
sign methodology. Information entropy is applied to quantify the uncertainty and the signifi-
cant level thresholds of each uncertain parameter. The results illustrate that the natural gas 
price has the most remarkable influence on the comprehensive performance of the CCHP. The 
result of the deterministic design (two-stage design) gives GPU at 1000 kW, AHP at 980 kW, 
EC at 0 kW, and GB at 0 kW. The optimization for the CCHP system under uncertain load 
and energy carrier prices gives the output of GPU at 800 kW, AHP at 840 kW, EC at 240 kW, 
and GB at 80 kW. The configurations could minimize the failure probability to 12.8%, which 
results in a 32.5% reduction vs. the deterministic design. 
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Nomenclature 

ATCS – annual total cost savings rate 
CE – CO2 emissions [kg] 
CER – CO2 reduction rate 
E – power generation/consumption, [kW] 
F – gas consumption, [m3h–1] 
G – radiation intensity, [Wm–2] 

IC – investment cost, [CNY] 
LHV – low heat value, [kJm–3] 
N – installed capacity, [kW] 
OC – operating cost, [CNY] 
OCS – operation cost saving rate 
PES – primary energy saving rate 

 
Figure 6. Comparison of the performances 
between two-stage design and three-stage 
design  
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Q – heating output, [kW] 
Qre – recovered waste heat from GPU, [kW] 
r – part-load ratio 
R – cooling output, [kW] 
Greek symbols 

α – primary consumption factor  
µ – coefficient of carbon emissions [kghm–3] 
ηe0 – rated power efficiency of GPU  
ηh0 – rated heating power efficiency of GPU 

ηe – power efficiency of GPU 
ηh – heating power efficiency of GPU 
Subscript 

GPU – gas-fired combined power unit 
AHP – absorption heat pump 
EC – electric chiller 
GB – gas-fired boiler 
grid – power grid 
sa – sale 
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Appendix A. Supplementary material 

CCHP system model 

Gas-fired combined power unit (GPU) 

As the core equipment of natural gas distributed energy system, the main parameters 
of the gas-fired combined power unit including the quantity of power generation, waste heat 
and gas consumption. The environment temperature has a little influence on the performance 
of gas fired combined power unit (GPU). Its rated efficiency varies with the installed capaci-
ty, which could be expressed [4]: 

 4 –8 2 –12 3
e0 GPU GPU GPU0.3513 1.15 10 5 10 8 10N N N         (A1) 

 –4 –7 2 –11 3
h0 GPU GPU GPU0.5646 2.27 10 1 10 2 10N N N         (A2) 

While the efficiency of GPU during actual operation varies with the part-load ratio, 
which could be expressed: 

 2 3
e e0 GPU GPU GPU(0.0113 2.9801 2.4726 0.4812 )r r r      (A3) 

 2 3
h h0 GPU GPU GPU(1.5853 2.1247 2.8870 1.3476 )r r r      (A4) 

As a result, the quantity of power generation, waste heat and gas consumption could 
be expressed: 

 GPU GPU GPUE N r  (A5) 

 
GPU

re h
e
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Q 
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  (A6) 
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The CO2 emissions related to the gas consumption, which could be calculated by: 
 GPU GPU GPUCE F  (A8) 

 GPU gas GPUPE F  (A9) 

The constraint is added to impose operational constraints on the GPU by considering 
the scope of power generation: 

 GPU_min GPU GPU_ maxE E E   (A10) 

In addition, the initial investment of GPU including purchase expense of internal 
combustion engine and heat recovery system, grid construction fee, waste disposal fee and in-
stallation fee and tax, the mathematical relationship between unit capacity investment cost and 
installed capacity could be fitted by the data given in [12]: 

 –4 2 –8 3
GPU GPU GPU GPU19756 3.6386 4.2689 10 1.6704 10IC N N N       (A11) 
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Absorption heat pump 

In the CCHP system, the absorption heat pump is driven by the high temperature 
flue gas waste heat to supply cooling in summer and heating in winter. The heating and cool-
ing output of absorption heat pump (AHP) could be represented as the rated capacity of AHP 
and the recovered waste heat from PGU based on the data from Broad company: 

 2 3
AHP AHP AHP AHP AHP( 0.1378 1.3467 0.2678 0.0123 )Q N r r r      (A12) 

 2 3
AHP AHP AHP AHP AHP( 0.7179 5.0295 4.8430 19.0876 )R N r r r      (A13) 

where the part-load ratio of the AHP could be expressed: 

 re
ac

AHP

Q
r

N
  (A14) 

The constrain of the operation condition has to be within the minimum and maxi-
mum operation condition of AHP: 

 AHP_min AHP AHP_maxr r r   (A15) 

The initial investment of AHP could be deduced with rated capacity: 

 –3 3
AHP AHP AHP72112 122.5 2.8589 10IC N N     (A16) 

Due to the AHP is driven by the recovered heat from gas engine units, therefore, 
here no longer double counting the CO2 emissions. 

Electric chiller 

The electric chiller (EC) works as an auxiliary cooling supplier when the AHP could 
not meet the cooling load. The EC could increase the thermoelectric ratio in the energy sys-
tem. In this research, with simplifying the mathematical model of EC, then the present per-
formance of EC does not vary with the installed capacity and operating conditions, nor does 
the investment cost. The mathematical model could be expressed: 

 

EC EC EC

EC_min EC EC_max

EC EC EC

EC grid grid

EC grid EC

R COP E

R R R

IC c N

CE E

PE F







 







 (A17) 

Gas-fired boiler 

The gas-fired boiler acts as an auxiliary heating source in the CCHP system, this pa-
per assumes that the efficiency of gas-fired boiler (GB) does not vary with the installed capac-
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ity and operating conditions, nor does the investment cost. The mathematical model could be 
expressed: 

 

GB GB
GB

GB_min GB GB_max

GB GB GB

GB gas GB

GB gas GB

=
3600
F LHV

Q

F F F

IC c N

CE F

PE F







 







 (A18) 
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